pcmdi_metrics.utils.extract_date_components
- pcmdi_metrics.utils.extract_date_components(ds, index=0)[source]
Extract year, month, and day from a dataset’s time dimension.
- Parameters:
ds (
xarray.Dataset
) – The dataset containing a time dimension.index (
int
, optional) – The index of the time value to extract. Default is 0 (first time value).
- Returns:
tuple
ofint
– A tuple containing (year, month, day).- Raises:
KeyError – If no time dimension is found in the dataset.
IndexError – If the specified index is out of bounds for the time dimension.
Notes
This function assumes that the dataset has a time dimension and that the time values are datetime-like objects with year, month, and day attributes.
Examples
>>> from pcmdi_metrics.utils import extract_date_components >>> import xarray as xr >>> dates = xr.cftime_range('2000-01-01', periods=365) >>> ds = xr.Dataset({'time': dates, 'data': ('time', range(365))}) >>> extract_date_components(ds) (2000, 1, 1) >>> extract_date_components(ds, index=100) (2000, 4, 10)
See also
get_time_key
Function to find the time dimension key in the dataset.