Duvel97 Liang, X.-Z., W.-C. Wang, and A.N. Samel, 2001: Biases in AMIP model simulations of the east China monsoon system. Climate Dynamics,17, 291-304.

AMIP model simulations of the east China (5-50°N; 105-122°E) monsoon system are analyzed to study coherent relationships between rainfall and wind annual cycle biases. A comparison with observed interannual variability patterns is carried out to identify the physical processes that explain the biases. The analyses show that poleward displacement of the simulated east Asian jet stream causes the ascending branch of the jet-induced transverse circulation to move north and, as a consequence, produces negative (positive) rainfall biases occur in central (northeast) China. The model simulations show decreased southwesterly flow and ITCZ rainfall over the South China Sea when weaker (versus observations) summer Hadley and Walker circulations are present. This results from diminished model tropical disturbance activity, and highlights the importance of air-sea interactions. In addition, during October-January, intensified model low-level easterlies enhance moisture transport and produce positive local rainfall biases over central and northeast China. Biases in the east China monsoon system are concurrently reflected in the planetary circulation. Enhanced northeast China rainfall results from increased surface pressure over the North Pacific and an amplified zonal pressure gradient along the east China coast. This bias pattern is associated with differences in model representations of topography. On the other hand, the South China Sea experiences an extensive elongated meridional rainfall bias dipole structure that straddles the equator. This is accompanied by a baroclinic vertical pattern over the tropics as well as a barotropic wave train that extends from Australia to the Antarctic, where the teleconnection is likely a direct atmospheric response to tropical convective heating.