
PCMDI Report No. 44

THE PCMDI SOFTWARE SYSTEM:
STATUS AND FUTURE PLANS

Dean N. Williams

Program for Climate Model Diagnosis and Intercomparison
Lawrence Livermore National Laboratory, Livermore, CA, USA

December 1997

PROGRAM FOR CLIMATE MODEL DIAGNOSIS AND INTERCOMPARISON
UNIVERSITY OF CALIFORNIA, LAWRENCE LIVERMORE NATIONAL LABORATORY

LIVERMORE, CALIFORNIA 94550

UCRL-ID-129074

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor the University of California
nor any of their employees, makes anv warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service bv trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the Universitv of California. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Government or the
University of California, and shall not be used for advertising or product endorsement
purposes.

This is an informal report intended primarily for internal or limited external distnbution. The
opinions and conclusions stated are those of the author and may or may not be those of the
Laboratory.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Of fice of Scienhfic and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,
Springfield,VA 22161

The PCMDI Software System:
Status and Future Plans

Dean N. Williams

Program for Climate Model Diagnosis and Intercomparison
Lawrence Livermore National Laboratory

Livermore, California USA

December 1997

i

Preface

This report on the status and future plans of the Program for Climate Model Diagnosis and
Intercomparison (PCMDI) software focuses on software that PCMDI is currently distributing
to the global climate community or has plans to distribute in the near future. Other secondary
software necessary for the distributed software to work will not be included in this document.
If anyone wishes to acquire PCMDI software source code, they may do so by filling out the
collaboration agreement located on the web (http://www-pcmdi.llnl.gov/software), which
identifies software ownership (i.e., U.S. Department of Energy) and prohibits any selling of
this software.

The development of PCMDI software would not have been possible without input from the
entire PCMDI staff, who have indicated to the author the type of software needed to do their
jobs well. Among PCMDI’s focal points are the intercomparison projects such as the
Atmospheric Model Intercomparison Project (AMIP) and the Coupled Model Intercomparison
Project (CMIP). Current and future software are designed to accommodate the needs of these
intercomparison projects, and it is hoped that the software is flexible enough to assist in other
areas of global climate modeling.

It is the desire of the author that anyone interested in PCMDI software provide input to their
development so that PCMDI can better serve its constituents in the global climate research
community. Readers are encouraged to e-mail or write to:

Program for Climate Model Diagnosis and Intercomparison (PCMDI)
Lawrence Livermore National Laboratory
P.O. Box 808, L-264
Livermore, California (USA) 94550
E-mail: williams@pcmdi.llnl.gov
Tel: (510) 422-7626
Fax: (510) 422-7675

ii

 Table of Contents

Abstract __ iii

Acknowledgments__ iv

Acronyms Glossary ___ v

1. Introduction and Purpose___ 1

2. Current and Future Distributed PCMDI Software ______________________________ 1

 2.1 Short-List of Software Products___ 2

 2.2 Detailed Description of PCMDI Software Products_________________________ 3

 2.2.1 Climate Data Analysis Tool (CDAT) _______________________________ 3

 2.2.2 Climate Database Management System (CDMS)_____________________ 6

 2.2.3 Climate Data UNIform File (cdunif) Reader ________________________ 8

 2.2.4 Data and Dimension (DDI) ______________________________________ 12

 2.2.5 Data Retrieval and Storage (DRS) ________________________________ 14

 2.2.6 EzGet ___ 16

 2.2.7 Library of AMIP Data Transmission (LATS) ______________________ 17

 2.2.8 Quality Control Software (QCS) _________________________________ 19

 2.2.9 Visualization and Computation System (VCS)______________________ 21

3. Web Development and Software Documentation_______________________________ 25

4. Multiple Platforms__ 25

5. Software Collaborations ___ 26

6. Code Repository__ 26

7. Summary of the PCMDI Software System ____________________________________ 28

iii

Abstract

This report describes the current status and future plans of PCMDI’s software products. A
complete description of each product is provided, including the product’s problem
statement, purpose, requirements, design diagram, current status, future development,
developers, contributors, and off-site collaborators. While each software product can be
executed as an independent process, it is important to note that all products work together in
the complete PCMDI Software System: a suite of software tools facilitating the storage,
diagnosis, and visualization of climate data.

iv

Acknowledgments

Input from the entire PCMDI staff was greatly appreciated in preparing this document.
Special thanks are due the PCMDI software design and development team which consists of
Jerry Potter, Karl Taylor, Clyde Dease, Charles O’Connor, Susan Marlais and Bob Drach,
without whom this document would not have been possible. In addition, special thanks to
Tom Phillips and Larry Gates for their editorial assistance, and to Anna McCravy for her
substantial graphics and layout contribution.

This work was performed under the auspices of the U.S. Department of Energy,
Environmental Sciences Division, by the Lawrence Livermore National Laboratory under
Contract W-7405-ENG-48.

v

Acronyms Glossary

ACL Advanced Computing Laboratory
AMIP Atmospheric Model Intercomparison Project
API Application Programmer’s Interface
CCM Community Climate Module
CDAT Climate Data Analysis Tool
CDMS Climate Database Management System
cdunif Common Data UNIform File Reader
CGI Common Graphics Interface
COARDS Cooperative Ocean/Atmosphere Research Data Service
CMIP Coupled Model Intercomparison Project
CVS Concurrent Version System
DDI Data and Dimension Interface
DEC Digital Equipment Corporation
DRS Data Retrieval and Storage
GUI Graphical User Interface
HDF Hierarchical Data Format
HP Hewlett Packard
IBM International Business Machines
LANL Los Alamos National Laboratory
LATS Library of AMIP Data Transmission Standards
LLNL Lawrence Livermore National Laboratory
NCAR National Center for Atmospheric Research
NERSC National Energy Research Supercomputing Center
netCDF network Common Data Form
PC Personal Computer
PCMDI Program for Climate Model Diagnosis and Intercomparison
PMIP Paleoclimate Modeling Intercomparison Project
PSQL PCMDI Structured Query Language
PSS PCMDI Software System
PVM Parallel Virtual Machine
QC Quality Control
QCS Quality Control Software
SGI Silicon Graphics, Inc.
SQL Structured Query Language
VCS Visualization and Computation System
VPOP View POP

1

1. Introduction and Purpose

The Program for Climate Model Diagnosis and Intercomparison (PCMDI) was established in
1989 at the Lawrence Livermore National Laboratory (LLNL) with the principal mission to
develop improved methods and tools for the diagnosis, validation and intercomparison of
global climate models. While playing a leading role in the development of climate diagnostic
tools, PCMDI has entered into collaborative agreements with the National Center for
Atmospheric Research (NCAR) and the Los Alamos National Laboratory (LANL) for the
provision of atmospheric and oceanic diagnostic functions that will be utilized in PCMDI’s
software products.

This document will focus primarily on the software tools necessary for PCMDI to sustain and
meet its short-term and long-term missions. The job assignment(s) envisaged for each PCMDI
software development staff member are also described. Here, we will only attempt to project
PCMDI software development out for one to two years, with project time lines presented only
where these now can be anticipated. As with all projected plans, it is anticipated that, with
changes in technology and in the PCMDI staff, future modifications of this document may be
needed.

2. Current and Future Distributed PCMDI Software

Processing intercomparison model data (i.e., Atmospheric Model Intercomparison Project
(AMIP), the Coupled Model Intercomparison Project (CMIP), and the Paleoclimatic Model
Intercomparison Project (PMIP) is an important part of PCMDI. All members of the PCMDI
software team are directly or indirectly involved in this endeavor and give these projects their
primary focus. To fully understand the data processing element of PCMDI see, “Processing
and Distributing Intercomparison Data,” by Peter Gleckler and Dean N. Williams (in
preparation). Reading and writing of intercomparison model data are the software team's
highest priority. Thus, it involves the further development of the Common Data UNIform File
(cdunif) reader and the Library of AMIP Data Transmission Standards (LATS), both of which
are at the core of PCMDI’s software.

As an important component of PCMDI's work in the development, testing, validation, and
intercomparison of global climate models, PCMDI has developed and distributed a suite of
software tools for the storage, diagnosis, and visualization of data. Section 2.1 below presents
a short list of the software products that are currently being used at PCMDI and distributed to
the climate community at large, or that are under design and development for future release.
Section 2.2 describes each PCMDI software product in more detail. Section 3 describes web
development and software documentation in detail. Section 4 lists all of the platforms that
PCMDI software supports. Section 5 describes the software collaboration agreements with
outside organizations. Section 6 describes the needed code repository. Finally, section 7
concludes with an overview of PCMDI’s primary software goal, the PCMDI Software System.

2

To further PCMDI’s principal mission, development of the Climate Data Analysis Tool
(CDAT), the Climate Database Management System (CDMS), and the Visualization and
Computation System (VCS) are also high on the list of priorities, but development of other
special-purpose software will also be needed. It is the aim of the PCMDI software
development team that, with the future development of CDAT, CDMS, and VCS, most special-
purpose software will be eliminated. Thus, the need to maintain so many software products
will be reduced.

2.1 Short-List of Software Products

Name Acronym Description Distributed Version

Climate Data
Analysis Tool

CDAT

Utilizes an interpreted language to
manipulate data and provide climate
scientists with diagnostic, statistical, and
regridding routines.

Internally Beta

Climate
Database
Management
System

CDMS

Designed to automatically locate and
extract metadata (i.e., variables,
dimensions, grids, etc.) from PCMDI’s
collection of model runs and analysis
files.

Internally Beta

Common Data
UNIform File cdunif

A library of input functions for
accessing netCDF, HDF, DRS,
GrADS/GRIB and VPOP data files.

Externally 1.7

Data and
Dimension
Interface

DDI

A Graphical User Interface (GUI) that
reads and writes available file formats,
and sends data to a variety of
visualization systems.

Externally 1.2

Data Retrieval
and Storage

DRS A library that supports direct access I/O,
and multi-dimensional array variables.

Externally 1.5

EzGet

A FORTRAN application programmer’s
interface (API) for reading various data
file formats via cdunif, and for
performing grid transformations, data
masking, and some calculations.

Externally 1.1

Library of
AMIP Data
Transmission
Standards

LATS

A collection of software routines to
output gridded data in either netCDF or
GRIB formats for the Atmospheric
Model Intercomparison Project (AMIP).

Externally 1.1

Quality
Control
Software

QCS Software that checks the correctness of
AMIP model data.

Internally Beta

Visualization &
Computation
System

VCS
A graphics software package that allows
the display, animation, and manipulation
of scientific data.

Externally 2.7

3

The PCMDI software products can be represented in levels as shown in Figure 1. The figure
shows the foundation-, intermediate-, and top-level design of the PCMDI software system.
Although each of the top-level applications are standalone, they can also be used by other
PCMDI applications directly or indirectly, thus making the system flexible to individual user
preferences.

netCDF HDF DRS GrADS VPOP

Levels of PCMDI Software System

Low-level CDMS interface Low-level LATS interface Python interface

PCMDI Applications

DDI VCS EzGet CDAT PSQLQCS

Cdunif Library

Figure 1. A building block look at the design structure of the PCMDI Software System.

2.2 Detailed Description of PCMDI Software Products

2.2.1 Climate Data Analysis Tool (CDAT)

CDAT Problem Statement

A basic problem facing climate scientists is not the absence of software to analyze data, but
rather a shortage of interrelated diagnostic tools that are consistent, flexible, portable,
adaptable, efficient, share data, and easy to use. Consequently, many scientists are writing
their own programs to ingest, manipulate and display their data. Redundancy in such efforts
diverts time for the debugging and enhancing of these programs that otherwise would be spent
on research. The resulting software is often not user-friendly, reusable, or portable, and does
not promote common standards within the climate community.

Another obstacle to sharing analysis software is the wide variety of data file formats that are in
use, making it necessary to write programs to convert data to a user’s preferred file format and
conventions. This data conversion requires additional expenditure of efforts on testing and
quality assurance. Modular and interrelated software to perform such tasks transparently
would thus be a valuable asset, allowing climate scientists to spend their time analyzing rather
than processing data.

4

CDAT Purpose

CDAT provides the climate scientist with an easy and fast method to read different file formats
(via cdunif) and to analyze data. It includes a set of predefined functions to allow the user to
manipulate the data and send the output to a file which can be viewed as an image, or as a
collection of animated images. CDAT also has a gradual learning curve, allowing the novice
user to quickly obtain useful results.

CDAT Requirements

CDAT uses software that has been developed mainly at PCMDI, NCAR, and LANL. Using
Python--an interpreted, object-oriented scripting language--as its centralized control module,
CDAT is designed to interact with other PCMDI software products. By using Python, CDAT
will fulfill the necessary requirements: a standard mathematical library and logical operators,
graphics capabilities, scripting language, API, application and user extensibility, and World-
Wide Web access.

PCMDI’s atmospheric scientists will provide CDAT with diagnostic, statistical, regridding,
and units conversion routines. NCAR’s CCM model diagnostic routines and LANL’s ocean
model routines will also be accessible from within CDAT.

CDAT will work as a standalone process and also will be accessible from within CDMS and
VCS. All CDAT, CDMS and VCS scripts will be, for the most part, interchangeable.

Users outside PCMDI will be able to access stored data by means of the World Wide Web.
Web browsers, such as Netscape and Internet Explorer, will allow outside collaborators to
search PCMDI’s database, access variables, manipulate data, and display the necessary
information.

C D A T D esign D iag ra m

P C M D I F unction s
N C A R F u nction s

A C L /L A N L F unctions

P Y T H O N
S crip t

A P I

cdu n if
C D M S

V C S

C om m a n d
L ine

Interface L A T S
netC D F

C G I

G U I

N u m ericsP V M

Figure 2. Conceptual view of CDAT’s modular design

5

CDAT Design Diagram Modules

Module Definition/Function

Python An interpreted, object-oriented scripting language that allows the user to call
CDAT scripts and use CDAT API commands.

GUI Allows the user to access CDAT from a point-and-click environment. From this
environment the user also has the ability to access the Command Line Interface.

Command
Line
Interface

Allows the user to interact with CDAT by entering commands or creating,
modifying, and/or running scripts. This interface also allows the Colormap
Editor and Animation Interface GUIs to appear on the screen.

LATS/
netCDF

LATS allows users to save manipulated data in the PCMDI convention standards.
LATS format options for saving data are either netCDF or GrADS/GRIB. For
those not wishing to save data in PCMDI’s convention standards, the option of
raw netCDF output is provided.

Numerics Supplies CDAT with trigonometric functions, fast Fourier transforms,
eigenvectors, etc.

CGI This interface provides CDAT with the ability to browse PCMDI’s database,
access variables, manipulate data, and display the results via a Web browser.

PCMDI The most commonly used PCMDI diagnostic and statistical functions included in
CDAT.

NCAR NCAR’s CCM atmospheric diagnostic functions.
ACL/
LANL

ACL/LANL’s ocean diagnostic functions.

cdunif Allows CDAT access to many types of data file formats (i.e., netCDF, HDF,
DRS, GrADS, and GRIB).

CDMS Allows CDAT to automatically locate and extract physics quantities (i.e.,
variables, dimensions, grids, etc.).

PVM

PVM is a software system that allows you to combine a number of computers
which are connected over a network into a parallel virtual machine. This
machine can consist of computers with different architectures, running different
flavors of the UNIX operating systems and can still be treated as if it were a
single parallel machine.

VCS Allows CDAT users the ability to display and animate scientific data.

CDAT Current Status

Module Status
Python Completed.
Command Line Interface Completed, may need modifications.
Graphical User’s Interface Needs design and development.
LATS Completed.
netCDF Completed.
Numerics Modifications are necessary.
Common Graphical Interface Needs design and development.

6

PCMDI Functions Under development, currently implementing regridder.
NCAR Functions Needs design and development.
LANL Functions Needs design and development.
cdunif Connections to completed.
CDMS Needs design and development.
VCS Completed, may need modifications.
Documentation Incomplete, further documentation is necessary.

CDAT is scheduled for beta release in August, 1997. Beta release will feature: Python
Numeric Functions, Command Line Interface, LATS, netCDF, cdunif, and VCS modules. It
also will contain a PCMDI function and limited documentation.

2.2.2 Climate Database Management System (CDMS)

CDMS Problem Statement

PCMDI is facing a data storage dilemma. Currently, climate scientists are storing data on
PCMDI’s UNIX server disk space (i.e., /scratch) and at the National Energy Research
Supercomputing Center (NERSC) on PCMDI’s storage archive. In addition, scientists also are
storing data there on local disk space. Having data in various locations can be confusing and
data is often misplaced and lost, costing scientists valuable time searching for or regenerating
data.
Having access to someone else’s data is also a problem, as it is often hard to understand
another methodology for storing or naming data and their attributes. Also, once the data is
located, it is often in a different file format, dimension arrangement, or naming convention.

All of the above are a hindrance to effectively using the data, limiting productivity and ability
to communicate on all levels of the data.

CDMS Purpose

CDMS is a software tool designed to automatically locate and extract metadata (i.e., variables,
dimensions, grids, parameters and attributes, etc.) from PCMDI’s collection of model runs and
analysis files. Its function will be to keep track of various data files, their contents, and the
format (i.e., netCDF, HDF, DRS, GrADS, GRIB) of each data file. CDMS will allow the user
to: conceptually reorganize stored data files; navigate and extract data by use of quantity names
and/or attributes; conceptually rename file quantities and join quantities that are physically
stored across multiple servers and/or files; and reorder and select arbitrary subsets as CDMS
transfers data from disk to memory.

CDMS is also designed to include an interactive tool, as well as a callable library, for the
maintenance, grouping, locating, and scanning of PCMDI’s data analysis files. It also will be
used to ‘override’ incorrect file coordinate values and ‘insert’ new attribute tags/comments. In
addition, users will be able to ‘combine’ quantities spread across several files into an outwardly
appearance single multi-dimensional array, all without physically having to move or modify
the actual data analysis files.

7

In short, CDMS is designed to be the logical storage structure for PCMDI’s data management
system, providing a relational database to retrieve arbitrary databases, datasets, dimensions,
grids, variables, parameters, and attributes. With the completion of CDMS, development of
standards for data archiving, access and exchange will lead to the system integration and
documentation of all model and observational climate data sets envisaged by PCMDI.

CDMS Requirements

CDMS is written entirely in the C programming language. It provides access to databases
through a scripting language, command line user interface, an API, and a GUI. The Structured
Query Language (SQL), the accepted universal database language, will be adapted for
PCMDI’s purposes (designated as PSQL) to allow users to describe a CDMS data set in an
intelligible form.

CDMS will work as a standalone process and also will be seamlessly accessible from within
CDAT, VCS and other PCMDI applications. All CDAT, CDMS and VCS scripts will be, for
the most part, interchangeable.

CDMS Design Diagram

PCMDI Software
System

Python

CDMS
Functions

cdunif
netCDF, HDF, DRS
GrADS, VPOP, etc

PSQL
API Library
C Interface

FORTRAN Interface

ASCII
CDMS Files

Figure 3. Conceptual view of CDMS’s modular design.

8

CDMS Design Diagram Modules

Module Definition/Function
PCMDI
Software
System

PCMDI’s complete software system, consisting mainly of CDAT, PCMDI’s
data manipulator; CDMS, PCMDI’s database; and VCS PCMDI’s
visualization system.

Python An interpreted, object-oriented scripting language that allows the user to call
CDAT scripts and use CDAT API commands.

CDMS
Functions

Low-level routines that create and queries the database.

API Library
Interface

C and FORTRAN libraries that interface into the low-level CDMS Functions.

ASCII
CDMS Files ASCII CDMS database files that user’s are allowed to create and manipulate.

cdunif Allows CDAT access to many types of data file formats (i.e., netCDF, HDF,
DRS, GrADS, and GRIB).

PSQL Command line interface that allows the user to run database commands to
create, modify and query the database.

CDMS Current Status

Module Status
PCMDI Software
System

Under development, completing and integrating CDAT, CDMS,
and VCS together.

Python Connecting CDMS to Python needs to be developed.
CDMS Functions Under development, 60 percent complete.

API Library Interface C Interface to low-level CDMS functions are 60 percent complete.
FORTRAN Interface needs to be designed and developed.

ASCII CDMS Meta
Descriptive Data Files

Completed, may need modifications.

cdunif Connections to CDMS Completed.

PSQL PSQL is completed, may need additional functions added to the
database.

Documentation Incomplete, documentation is 10 percent complete.

2.2.3 Climate Data UNIform File (cdunif) Reader

Cdunif Problem Statement

As a participant in the international climate community, PCMDI receives and sends climate
data in many different formats, requiring the ongoing transformation of others’ data to fit one’s
own application. This often leads to data conversion errors, data duplication, and use of large

9

amounts of disk space. Data conversion also is expensive and time consuming; as a result,
some scientific investigations in the past have been abandoned.

Figure 4 shows a hypothetical 4D data set that may have been received. Note, data can be
received as a 1D, 2D, …, up to 128D data set. The figure below is just to give a perspective
view of our concept of a data array.

Figure 4. A conceptual look at a hypothetical array data.

Cdunif Purpose

Cdunif is an API library that allows programs to read many different structured data files
without concern for their actual file format. Presently, cdunif includes a collection of uniform
input/output (I/O) routines for accessing netCDF, HDF, DRS, GrADS, and VPOP file formats.
Through the GrADS control file, GRIB files also can be read. Cdunif will be designed to
accommodate other structured data file formats, as needed by the climate community.

All major PCMDI software products will use cdunif to ingest data directly or indirectly via
CDMS.

Cdunif Requirement

The cdunif interface is modeled very closely after the UCAR netCDF interface. In most cases,
cdunif functions are identical in everything except name to analogous netCDF functions. The
logical model for metadata in cdunif also will be very similar to netCDF. A file contains a set
of variables, dimensions, and attributes. Variables will be identified by integer ID or name;

The Contents of a Four-Dimensional Data Set

Array
Attributes

Array
Data Type

Dimension
X, Y, Z, T

Dimension
Attributes

Dimension
Data Type

Dimension
Scale

Dimension
Attributes

Dimension
Data Type

Dimension
Scale

Dimension
Attributes

Dimension
Data Type

Dimension
Scale

Dimension
Attributes

Dimension
Data Type

Dimension
Scale

.....

Dimension X Dimension ZDimension Y Dimension TArray

10

variable IDs range from 0 to N-1, where N is the number of variables. Attributes also are
identified by number or name, and can either be global or variable-specific.

Dimensions will be treated somewhat differently than in netCDF. Some of the file formats
supported by cdunif, notably the Data Retrieval and Storage (DRS) format, support dimensions
which are local to a given variable; they are not shared by different variables and do not have
unique names relative to other dimensions. Consequently, a distinction is made between local
and global dimensions, where the latter can be shared. (DRS vector dimensions are global.)

Every dimension also has an associated coordinate vector, which can be retrieved by the
cudimget function. Like netCDF, dimensions are identified by name or numeric ID; both local
and global dimensions have unique numeric IDs, which are sequential integers starting at 0.

The cdunif interface supports the data types corresponding to the C programming language:
byte, character, short, integer, long, float, double, and long double. The cdunif functions are
accessible from both C and FORTRAN programs via different API’s, but contain identical
function calls and parameter values. The APIs will allow the user to open and close files, to
inquire about variables and dimensions and attributes, and to read data in a way that is user-
specific (e.g., wrapped, transposed, reversed, etc.).

In compliance with the Cooperative Ocean/Atmosphere Research Data Service (COARDS)
convention, cdunif can read data that has “missing_value”, “add_offset”, and “scale_factor”
attributes set for the variable.

Cdunif Design Diagram

cdunif
API

netCDF
version 2.3 DRSHDFnetCDF

Version 3.3

GrADS/
GRIB

VPOP

Figure 6. Conceptual view of cdunif’s modular design.

11

Cdunif Design Diagram Modules

Module Definition/Function

cdunif API
Provides a C and FORTRAN application programmer’s interface to
low-level cdunif functions (i.e., open and close a file, inquire file
information, read data, etc.).

netCDF
version 2.3

NetCDF library version 2.3, reads data bit-by-bit via XDR.

netCDF
version 3.3

NetCDF library version 3.3, reads data differently via mmap. This
may speed up the ingest process of netCDF files.

HDF HDF library allows cdunif to ingest HDF files that were created with
HDF version 3.0 or higher.

DRS DRS library allows cdunif to ingest DRS files.

GrADS/GRIB GrADS/GRIB is a series of C routines that read GrADS files into
cdunif. Through a GrADS control file cdunif can read GRIB data.

VPOP VPOP is a library that allows access to LANL’s ocean data.

Cdunif Current Status

Module Status

cdunif API

C interface is complete. FORTRAN interface complete, but may
need modifications. cuhyperslab (allows the user to transpose,
reverse, sub-set, and wrap data) - completed but may need
modifications.

netCDF
version 2.3

Completed.

netCDF
version 3.3

Needs development.

HDF Completed.
DRS Completed.
GrADS/GRIB Needs further development.
VPOP Needs development.
Documentation 50 percent complete.

The next version of cdunif, scheduled for beta release in September 1997, will feature: HDF,
VPOP, newer version of GrADS/GRIB, the cuhyperslab function, and attribute manipulation
of the data (e.g., “add_offset”, “missing_value”, and “scale_factor”).

12

2.2.4 Data and Dimension (DDI)

DDI Problem Statement

The Data and Dimensions Interface (DDI) addresses a significant problem in the visualization
of large data sets: the need to extract only the relevant data and to readily provide these in the
required form to a chosen graphics engine.

Many different research communities have developed formats for storing and retrieving
scientific data and their associated metadata. These formats, while similar in their intent, are
often incompatible, and their lack of support by commercial visualization systems has been an
impediment to their widespread use. Accessing large data files has also proven problematical.

Sometimes generated on supercomputers, these data often are visualized on smaller platforms
(i.e., workstations, PCs, etc.), with the data transfer being implemented either by copying to
disk or by use of the Internet’s File Transport Protocol (FTP). In both cases, the data has
lacked solid quality-control.

DDI Purpose

DDI transfers data between files, formats and visualization systems.

DDI Requirements

DDI works within the specifications of each supported format to promote compatibility and
provide the following capabilities:

• Browsing the contents of files written in a variety of formats;
• Randomly selecting data variables;
• Rearranging variables into the desired form;
• Modifying the values of certain variable attributes;
• Saving variables to new files;
• Feeding variables directly to a visualization system.

 DDI operates in two modes:

• As a module in a data flow environment;
• As a stand-alone application capable of sending data over the network.

 Presently, DDI is able to transfer variables to the following visualization systems:

• The PCMDI Visualization and Computation System (VCS);
• The Applications Visualization System (AVS), from Advanced Visual Systems Inc.;
• Collage and XImage, from the National Center for Supercomputer Applications (NCSA);
• The Interactive Data Language (IDL) from Research Systems, Inc.;
• IRIS Explorer, from Silicon Graphics Inc.;
• PV-WAVE, from Visual Numerics Inc.
• Khoros, from Khoral Research, Inc.

13

DDI Design Diagram

Ingest Data
Visualization

Systems

AVS

Collage/
XImage

IDL

IRIS
Explorer

PV-WAVE

VCS

Khoros

GrADS/GRIB

VPOP

DRS

netCDF

HDF

DDI

GUI

CDAT
Save Data

DRS

netCDF

HDF

AVS/Field

Explorer/Lattice

 Figure 7. Conceptual view of DDI’s modular design.

DDI Design Diagram Modules

 Module Definition/Function

 DDI
 Performs data operations, such as: transformation of the data; reversal and scaling of
coordinate values; modification, creation, and removal of attributes; export of data to
visualization engines.

 GUI Allows data access and access to visualization systems via a point-and-click interface.

 AVS Allows sending of data to AVS directly, where DDI is a module in the AVS data flow
environment, or indirectly using UNIX sockets.

 Collage/
 XImage

 Allows sending of data indirectly to the NCSA visualization tools, using UNIX sockets.

 IDL Allows the sending of data indirect to IDL, using UNIX sockets.
 IRIS
Explorer

 Allows the sending of data to Explorer directly, where DDI is a module in the Explorer
data flow environment, or indirectly using UNIX sockets.

 Khoros Allows the sending of data to Khoros directly, where DDI is a module in the Khoros
data flow environment, or indirectly using UNIX sockets.

 PV-WAVE Allows the sending of data to PV-WAVE indirectly using UNIX sockets.
 VCS Allows the sending of data indirectly to VCS using UNIX sockets.

 Save Data Allows the saving of data in five file formats: DRS, netCDF, HDF, AVS/Field, and
Explorer/Lattice.

 Ingest Data Allows the ingesting of data in five file formats: DRS, GrADS/GRIB, HDF, netCDF,
and VPOP.

14

DDI Current Status

 Module Status
 DDI Completed.
 GUI Completed.
 AVS Completed.
 College/XImage Completed.
 IDL Completed.
 IRIS Explorer Completed.
 PV-WAVE Completed.
 VCS Needs design and development.
 Khoros Needs design and development.

 Ingest Data
 Incomplete, needs access to cdunif module. By accessing
the cdunif module, DDI will be able to ingest
GrADS/GRIB and VPOP data.

 DDI version 1.2 is currently released to PCMDI users and to the public.

2.2.5 Data Retrieval and Storage (DRS)

DRS Problem Statement

 Prior to the 1990’s, climate scientists commonly stored data in a FORTRAN binary or ASCII
file, with metadata also in ASCII. This method was problematical when porting data from a
supercomputer to a workstation, but later the cross-platform issue was solved by the
introduction of the IEEE standard file format. However, the exchange of scientific data
remained difficult due to the difficulties of reading different file formats. This problem is
alleviated by the Data Retrieval and Storage (DRS) library and utilities developed by PCMDI.

DRS Purpose

 The DRS (Data Retrieval and Storage) library and utilities support the scientific data format
used at PCMDI as well as the high-volume multi-dimensional array output from global climate
models. Presently, DRS runs on the following platforms: Cray/UNICOS, Sun/SunOS 4.1.3,
Sun/Solaris 2.4, SGI IRIX 5.3, IBM RS6000/AIX 3.2, DEC Alpha/OSF, HP/HP-UX 9.0, and
Linux/PC.

DRS Requirements

 Notable features of the DRS system include:
• support for multi-dimensional array variables
• sub-setting and data reordering operations
• direct access I/O, and access by coordinate ranges
• machine-independent format
• support for Cray native mode
• C and FORTRAN APIs
• interactive data browser utility

15

DRS Design Diagram

C / FORTRAN
Application

DRS
API

drsed - data
browser

IEEE
Standard

Output

 Figure 8. Conceptual view of DRS’s modular design.

DRS Design Diagram Modules

 Module Definition/Function

 DRS
 Provides a C and FORTRAN application programmer’s interface
to low-level DRS functions (i.e., open and close a file, inquire
file information, read data, write data, etc.).

 C/FORTRAN
Application

 C or FORTRAN program that calls DRS functions via the API.

 Drsed data browser Utility program that browses DRS files.

 DRS Output Saves data in IEEE standard output. This allows the data to be
read on different platforms.

DRS Current Status

 Module Status

 DRS Completed. May need to port to
different platforms.

 Drsed - data browser Completed.

 DRS version 1.6 is currently released to PCMDI users and to the public.

16

2.2.6 EzGet

EzGet Problem Statement

 After the inception of DRS, the need for extensions of this data access software became
apparent. These include the need for better error trapping capabilities and more detailed error
messages; for more convenient ways to select data from specified regions (e.g., “Oceans”,
“North America”, all land areas north of 45 degrees latitude, etc.); for the ability to map data to
a new grid at the time it is retrieved; for automatic creation of “weights” used in subsequent
averaging or masking of data; for automatic retrieval of all dimension information; and for
increased control in specifying the domain, grid and structure of the retrieved data.

EzGet Purpose

 EzGet (pronounced “Easy-Get“) was developed to meet the needs noted above. It serves a
different purpose from other software tools developed at PCMDI in that, unlike DDI and VCS,
EzGet comprises a set of subroutines that can be linked to any FORTRAN program. The
software accesses data stored in file formats that are readable by the cdunif FORTRAN API;
however, use of EzGet does not require knowledge of cdunif.

EzGet Requirements

 EzGet is written in FORTRAN, the programming language most familiar to climate scientists.
However, to comply with the overall design of the PCMDI software system, many of EzGet’s
functions will be incorporated into CDAT.

EzGet Design Diagram

EzGet
API

cdunif

FORTRAN
Application

Error
Messages

Cddrs

cdunif

 Figure 9. Conceptual view of EzGet’s modular design.

17

EzGet Design Diagram Modules

 Module Definition/Function

 EzGet

 Provides the user with a FORTRAN API that has substantial error
trapping capabilities, the capability of selecting data from specified
regions, the ability to map data to a new grid, the creation of average
weights, and the automatic retrieval of all dimension information.

 Standard
Output

 Error Messages.

 Cddrs Indirect connection to cdunif. It uses the DRS API to feed
information to cdunif.

 FORTRAN
Application

 User specified FORTRAN program.

 cdunif Allows EzGet access to many types of data file formats (i.e., netCDF,
HDF, DRS, GrADS, and GRIB).

EzGet Current Status

 Module Status
 EzGet Completed.
 Standard Output Completed.
 Cddrs Completed.
 cdunif Direct cdunif connection to EzGet is incomplete. Design

and Development is necessary.

 EzGet version 1.0 is currently released to PCMDI users and to the public.

2.2.7 Library of AMIP Data Transmission (LATS)

LATS Problem Statement

 A library of software routines to output gridded data in the COARDS convention is needed to
simplify the processing of voluminous data from the next phase of the AMIP (denoted as
AMIP II) and other model intercomparison projects.

LATS Purpose

 LATS is a library of software routines for output of gridded data that was developed by
PCMDI in support of AMIP II and other intercomparison projects. The primary function of
LATS will be to establish and implement a convention/standard for gridded data, and thus
facilitate data handling and exchange. The LATS API, which is designed to be simple to
understand and use, provides FORTRAN and C interfaces.

18

 LATS applications can output data in either the WMO GRIdded Binary (GRIB) format or in
the netCDF format under the COARDS convention.

LATS Requirements

 LATS is not considered to be a general purpose gridded data output system; rather, it operates
within the following design constraints:

• Simple to use
• Multi-platform
• Targeted for global climate model output (currently limited to use with rectilinear data)
• Implementing COARDS conventions for data and metadata
• Using two well-established and commonly used data formats
• Software to be made available in the public domain.

 LATS outputs rectilinear, gridded, spatio-temporal data written in either GRID or netCDF
formats that are machine-independent. The fundamental unit of data written with a single
function is known as a horizontal longitude-latitude slice of a variable. However, derivative
structures such as zonal mean-height cross sections (i.e., a sequence of single-longitude,
multiple-latitude grids) are also supported.

 LATS maintains an internal parameter table that prescribes variable names, description, units,
datatype, basic structure (e.g., upper air or surface), and compression (GRIB options). These
descriptors are inferred from the parameter name only. Thus, most of the metadata needed to
write GRIB and/or netCDF data are located in the parameter table to simplify the API. An
option also is provided to override the internal table with an external parameter file.

 LATS parameter tables are designed to fit the specific needs of climate model intercomparison
projects:

• More than one LATS file may be open simultaneously for output;
• For a given time point, multiple variables and variables at multiple levels may be

written in any order;
• Data can only be written in increasing time sequence;
• All data are floating-point or integer. Only FORTRAN REALS (C floats) and

INTEGERS (C ints) are written.

19

LATS Design Diagram

Save Data

netCDF

GrADS/GRIB

LATS
API

 Figure 10. Conceptual view of LATS’s modular design.

LATS Design Diagram Modules

 Module Definition/Function

 LATS Contains functions to save data in the COARDS
conventions. It also contains a C and FORTRAN API.

 Save Data Saves data in either netCDF or GrADS/GRIB formats.

LATS Current Status

 Module Status
 LATS Completed.
 Save Data Completed, but will need work on the GrADS/GRIB API interface.

 LATS version 1.1 is currently released to PCMDI users and to the public.

2.2.8 Quality Control Software (QCS)

QCS Problem Statement

 In AMIP II, PCMDI anticipates the need to process and quality control large data sets from
numerous climate models in a relatively short period of time. Past experience suggests that the
quality of the data will vary considerably over time and from one modeling group to another.
In addition, the large size and variety of the data, the short time frame for their evaluation, and
the possibility of errors all demand the development of software to automate the quality control
(QC) process.

QCS Purpose

 QCS provides a semiautomatic procedure for quality control of these model output data. The
data first are read and organized for evaluation of their consistency, especially with respect to
integrity of time sequence. Then the data are rewritten in a standard time series to facilitate the

20

QC process, which consists of two phases. First, the data are subjected to a numerical test for
statistical idiosyncrasies; then, VCS plots of specially constructed diagnostics fields are
visually inspected to reveal problems not uncovered by the numerical test. As a final step,
QCS archives the quality-controlled data in a standard format.

QCS Requirements

 QCS is written in Python with emphasis on the use of other software currently under
development, in particular the LATS and cdunif modules that are being coded for CDAT. In
addition, QCS has its own math module to implement special calculations needed in the QC
process.

QCS Design Diagram

CDAT

QC M ath

LATS

VCS

PYTHON
Scripts

API

 Figure 11. Conceptual view of QCS’s modular design.

QCS Design Diagram Modules

 Module Definition/Function

 Python
 An interpreted, object-oriented scripting language that
allows calls to CDAT, QCS, and VCS scripts and also
allows use of API commands for CDAT, QCS, and VCS.

 CDAT Provides the diagnostic, statistical, and regridding
routines.

 LATS
 Allows the saving of manipulated data in the PCMDI
convention standards. LATS format options for saving
data are either netCDF or GrADS/GRIB.

 QC Math Implements numerical testing of the data for statistical
idiosyncrasies.

 VCS Allows the display and animation of scientific data.

21

QCS Current Status

 Module Status

 QC Math Under development. Once the QC math functions are complete,
then the connections to Python must be implemented.

 Database Inquiry Completed. These database inquiries are not to be confused with
CDMS.

 VCS Completed, may need modifications.
 LATS Completed, may need modifications.
 CDAT Started, but incomplete.

 QCS is scheduled for beta test in September, 1997. Beta release of this product will
follow that of CDAT.

2.2.9 Visualization and Computation System (VCS)

VCS Problem Statement

 The massive amounts (~ gigabytes) of data produced by climate model simulations makes
imperative the development of powerful visualization tools. Because no single display
technique can elucidate all facets of climate model behavior, the visualization system must
possess a wide range of graphics capabilities. In comparing simulations from many different
models, it is also necessary to perform grid transformations and computations of additional
diagnostic variables.

VCS Purpose

 The Visualization and Computation System (VCS) is designed to meet the visualization and
graphics needs of climate scientists. Because of the breadth of its capabilities, VCS has proven
to be a useful tool for other scientific applications as well. VCS allows wide-ranging changes
to be made to the data display, provides for hard-copy output and includes a means for
recovery of a previous display. VCS also allows the user to browse large amounts of data and
obviates the need to create and keep track of intermediate data files.

22

VCS Requirements

 In the VCS model, the data display is defined by a trio of named attribute sets, designated the
"primary elements". They include: the data, which define what to display; the graphics
method, which specifies the display technique; and the picture template, which determines the
appearance of each segment of the display.
 In addition, detailed specification of the primary elements’ attributes are provided by eight
"secondary elements":

• colormap: specification of combinations of 256 available colors;
• fill area: style, style index, and color index;
• format: specifications for converting numbers to display strings;
• line: line type, width and color index;
• list: a sequence of pairs of numerical and character values;
• marker: marker type, size, and color index;
• text: text font type, character spacing, expansion and color index;
• text orientation: character height, angle, path, and horizontal/vertical alignment.

 By combining primary and secondary elements in various ways (either interactively or in batch
mode), the VCS user is able to comprehensively diagnose and intercompare climate model
simulations.

 VCS provides capabilities to:

• ingest data written in netCDF, HDF, DRS, GrADS, GRIB, or VPOP data file
formats

• browse data directories and read these file formats
• quickly display variables via default settings
• view, select and modify attributes of data variables and of their dimensions
• create and modify existing template attributes and graphics methods
• save the state of the system as a script to be run interactively or in batch mode
• save a display as a Computer Graphics Metafile (CGM), raster, or Postscript file
• perform grid transformations and compute new data variables
• create and modify colormaps and zoom into a specified portion of a display or the

VCS Canvas
• change the orientation (portrait vs. landscape) or size (partial vs. full-screen) of a

display
• animate a single data variable or multiple data variables simultaneously
• save modified data variables in netCDF-, HDF-, or DRS-formatted files

23

Figure 12. Conceptual view of VCS’s modular design.

VCS Design Diagram Modules

Module Definition/Function

VCS
Contains functions to: create templates, graphics methods, and modify data,
interact with GUI and scripts, animate, compute, change colormaps, save
data, and save images.

VCS Script Allows the saving and running of VCS commands in batch mode or from
the GUI.

VCS GUI Allows the user to interface with VCS via a graphical user’s interface.

VCS Functionality
VCS functions allow the user to animate data, change the colormaps,
compute data, interface to CDAT, modify the VCS canvas, and change data
attributes.

Save Data Saves data in three different file formats: DRS, netCDF, and HDF.
Save Image Saves images in three different formats: CGM, raster, and Postscript.
VCS Triples Defines by a trio of named attributes: data, template, and graphics method.

VCS Triples

Template

Ingest Data

CDMS

cdunif

cddrs

Graphics
Method

VCS Functionality

Animation

Colormap

Computations

CDAT

VCS Canvas

Attribute
Manipulations

VCS
Scripts

PYTHON
Scripts GUI

Save Data

DRS

netCDF

HDF

CGM

Raster

Postscript

Save Image

VCS Design Diagram

24

VCS Current Status

Module Status
VCS Completed.
VCS Scripts Completed, may need modifications.
VCS GUI Completed, will need modifications.
VCS Functionality Completed, may need modifications.
Save Data Completed, may need modifications.
Save Image Completed, may need modifications.
VCS Triples Completed.

VCS version 2.7 is currently released to PCMDI users and to the public.

3. Web Development and Software Documentation

Documentation is an important means to inform users of PCMDI’s software products.
Documentation also explains the problem the software addresses, describes the purpose and
requirements of the software, and shows how to use the software by providing relevant
examples.

All of PCMDI’s software products described in this report will be documented to high
standards of quality and will be accessible via the World Wide Web. Currently, documentation
for five of PCMDI’s software products (DDI, DRS, EzGET, LATS, and VCS) may be viewed
at Web address http://www-pcmdi.llnl.gov/software/

Also, on our Web site, PCMDI software users can submit bug and enhancement requests via
the “PCMDI Software Bugs Form” and the “PCMDI Software Enhancements Request Form”,
respectively.

Software documentation will be provided in several formats, including compressed HTML,
Adobe Acrobat PDF, and compressed book-form Postscript with pagination, table of contents,
and index.

4. Multiple Platforms

All software products listed in the PCMDI Software System are able to run on the following
platforms:

Platforms Operating Systems
Cray C90 and J90 UNICOS 8.0
DEC(Digital Equipment Corporation) OSF 3.2
HP (Hewlett Packard) HP-UX 9.0.5 or higher
IBM(International Business Machines) AIX 3.5 or higher
PC (Personal Computer) Linux 3.0.3 or higher
SGI (Silicon Graphics, Inc.) IRIX 5.2, 5.3, or 6.1
SUN Microsystems, Inc. SunOS 4.1.3 or Solaris 2.4 or higher

25

Note: PCMDI will work towards porting our software products to Windows NT. This will be
done either by rewriting the code to work in the Windows NT environment, or by
porting the UNIX/X11R6/Motif/C/FORTRAN code using NutCracker NT or OpenNT.

5. Software Collaborations

In July of 1995, PCMDI software team members met with Dave Williamson and Jim Hack of the
National Center for Atmospheric Research (NCAR), at which time the Visualization and
Computation System (VCS) was demonstrated. As it was clear that PCMDI and NCAR would
greatly benefit from collaboration, Dean Williams subsequently drafted a PCMDI-NCAR
collaboration agreement. PCMDI’s part of the agreement was to provide NCAR with VCS, and to
design and develop a calculator for climate analysis (now designated as CDAT). NCAR’s part of
the agreement was to provide PCMDI with climate diagnostic routines.

In May of 1997, PCMDI software team members met with Dr. Bob Malone, the director of the
Advanced Computing Laboratory (ACL) at Los Alamos National Laboratory. After demonstration
and discussion VCS and CDAT, PCMDI and ACL also entered into a software collaboration
agreement. PCMDI will provide ACL with software products (i.e., PCMDI’s Software System)
and ACL will provide PCMDI with oceanic numeric functions.

6. Code Repository

Since PCMDI has a large amount of developed code, it is imperative that some type of code history
be implemented. To maintain current and future code, the PCMDI staff has elected to use the
Concurrent Version System (CVS). CVS will provide network-transparent source code control for
PCMDI’s software system, and will assist the software development team by providing the
following features.

• CVS will maintain a history of all PCMDI software changes made to each directory
tree. Using this history, CVS can recreate past states of the tree, or show a developer
when, why, and by whom a given change was made. By supporting branches, CVS will
help manage long-term changes and bug-fix releases.

• CVS will provide reliable access to PCMDI’s software directory trees from remote
hosts, using internet protocols. The PCMDI software team member, working either
from home or at a remote site, can perform all the same operations as are available
locally. Access can be authenticated using the Kerberos network security system.

• Most importantly, CVS supports parallel development, allowing more than one
developer to work on the same sources at the same time.

Cyclic Software provides commercial support and development expertise for CVS. They have
been contacted, and approval to purchase and setup CVS for our entire software system is
underway. Dean Williams, Bob Drach, and Susan Marlais will be in charge of setting up this
system.

26

Each person on the PCMDI software team will be expected to follow the following CVS protocols
when developing or maintaining the PCMDI Software System. (The version control is described
below by Cyclic Software.)

• Each developer uses the command cvs checkout to create their own copy of the
source tree from the CVS repository. The command can operate on a directory tree,
on a single file, or on a module; a module groups several files or directories into one
entity, which can be operated on as a unit. One defines modules by editing the
‘modules’ file.

• The developer modifies, compiles, and tests the code in their copy of the source tree
(called a working directory) with whatever editors and tools they choose -- Emacs,
make, etags, etc. Users will use commands cvs add and cvs remove to add and
remove files.

• When the changes are complete, the developer uses the command cvs commit to
merge changes back into the repository. This makes her changes available to other
developers.

• At any point, the developer may use the command cvs update to merge changes
committed by others into her working directory. If there are uncommitted changes
to files in their working directory, CVS prints a message and attempts to merge the
changes from the repository with their changes in the working directory. If the
merge fails, CVS indicates a conflict, which the developer resolves manually with a
text editor.

• The developer can show the differences between two revisions with the command
cvs diff; show the log of changes to a particular file with cvs log; show the history
of each line of a file with cvs annotate; and show who has used cvs checkout, cvs
tag, and several other CVS commands, by using the cvs history command.

• CVS supports watches, allowing developers to request notification when someone
else begins editing a file, or to obtain a list of developers currently working on a
file.

• The user can record the state of the repository at a particular point with the cvs tag
command, and can then use that tag as an argument to most CVS commands, for
example to retrieve the files as of the tagged point.

• The developer can create a new development branch with the command cvs tag -b,
and manipulate branches with cvs update -r and cvs checkout -r. Subsequent
operations in that working directory apply to that branch. To return to the main
branch, the developer can use cvs update -A. The cvs update -j command merges
changes made on another branch into the working directory.

27

• The existence or nonexistence of a file is itself version controlled, so that files can
exist on some, but not all, branches and users can reproduce the state of the files at
any given point in time.

• The developer can mark a file as binary, which prohibits merging and line
terminator conversions, using the command cvs admin -kb.

• Wrappers allow the developer to run files through a filter on their way in or out of
CVS; for example, developers can instruct CVS to apply the indent command to
source files before committing the changes.

The CVS client and server run on most UNIX platforms. (PCMDI will be developing and
maintaining code on SUN and SGI machines.) The CVS client also runs on Windows NT, a
desirable feature since we may wish to port the PCMDI Software System over to Windows NT
in the future.

7. Summary of the PCMDI Software System

The principal mission of the Program for Climate Model Diagnosis and Intercomparison
(PCMDI) is to develop improved and seamlessly interconnected methods for the diagnosis,
validation and intercomparison of global climate models. The need for such standards has
become increasingly apparent as more complex climate models are developed, while the
disagreements among models, and between models and observations, remains significant and
poorly documented. The nature and causes of these disagreements must be better understood
before these models can be confidently used for climate sensitivity and predictability studies in
support of global change research.

The PCMDI Software System was designed to aid climate scientists in the study of global
climate models. Its concept is simple and flexible enough to interchange its parts and expand
in the future. The primary software system comprises of three parts: CDAT manipulates data
and provide climate scientists with diagnostic, statistical, and regridding routines; CDMS
automatically locates and extracts metadata (i.e., variables, dimensions, grids, etc.) from
PCMDI’s collection of model runs and analysis files; and VCS, a graphics software package to
display, animate, and manipulate scientific data.

Each one of these software products is independent and can run as a standalone process or can
run together as part of a single process. The three systems share common scripting commands
implemented by Python, an interpreted, object-oriented language, and are available for use in C
or FORTRAN applications via an API. In the figure below, the central box “Script” represents
Python, the mechanism that connects all PCMDI software.

28

PCMDI Software System

CDAT

CDMS VCS

PYTHON
Scripts

Figure 13. Conceptual view of PCMDI’s Software System.

When running CDAT as a standalone process, a command line user interface will appear along
with a CDAT output window. The “CDAT>” prompt will wait for the user to input a
command CDAT command. Through this interface, data are manipulated, and the other two
software systems can be accessed via a Python script command. Therefore, a likely scenario in
a CDAT session would be to search the directory for data, manipulate the data, and then plot
the data via VCS. To help users move quickly through the data, some of the VCS GUI widgets
are included in (e.g., “Animation Panel”, “Colormap Editor”, etc.). CDAT also contains an on-
line help menu for quick command lookup.

CDMS is similar to CDAT in its command line user interface, the only exception being the
prompt “CDMS>” instead of “CDAT>”. CDMS also can be initiated to run in an Xterm
window. When operating in this mode, the user has no access to CDAT or CDMS, but still can
run scripts that are designated to be done by CDMS. In that event, the prompt at the Xterm
window then changes to “PSQL>” which stands for PCMDI Structured Query Language.

VCS has the ability to run in batch mode or from an elaborate graphical user interface (GUI).
Because VCS was developed first, and in order to accommodate the many current VCS users,
CDAT and CDMS are designed to be accessed from within the VCS GUI. Thus, the user will
be able to choose whether to access data files and variables via the currently implemented
directory, or though CDMS, using PSQL calls. Here, data manipulation will be done with
CDAT via a point-and-click environment or through the command line user interface.
Taken together, PCMDI software tools are designed to provide climate scientists with the best
possible means to analyze their data. These software products allow manipulation of data to

29

perform needed calculations, display of results, annotation of various data file formats and
access of multi-dimensional arrays.

Figure 14. Conceptual view of PCMDI’s Software System.

PCMDI Software Tools Overview

Calculations

cdunif reads various
data files and their
attributes (e.g.,
netCDF, DRS, HDF,
GrADS, VPOP)

Scientific data
(Multi-dimensional arrays)

Annotation

X
4.1586

6.9214
2.9182
4.0913

Y
25.697
38.451
67.904

58.743

Z
.78341
.77549

.87401
.90428

Images

Vdata
(Tables of ints,
floats, chars, etc.)

For further information on PCMDI and the PCMDI Software System
visit our Web site at URL http:/www-pcmdi.llnl.gov/

