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                                          Introduction.
Coupled global climate models (CGCMs) are widely used for studying the complex cli-

mate system, its variability, and its response to changing forcing. In practice, however, CGCMs
represent a “balance of approximations” that are necessary in order to represent the working of the
climate system at the finite resolutions allowed by current computer capability and the limitations
of available knowledge. The steps taken to pass from the physical “laws” governing the system to
a working global model introduce error and approximation. It is desirable to quantify this error, to
understand its origins, and to reduce it in so far as possible. Model Intercomparison Projects
(MIPs) are a “community” analysis/verification activity which seeks to: (1) document the ability of
models to simulate the current climate; (2) identify common deficiencies or systematic errors in
model results; (3) formulate hypotheses concerning the causes of model deficiencies; (4) perform
experiments to clarify causes and potential solution to climate model deficiencies; and (5) to docu-
ment model evolution. Coupled atmosphere/ocean models permit and exhibit behaviour absent in
the separate uncoupled components and this is accompanied also by new aspects of error. Here we
evaluate and intercompare basic features of the “control” or unperturbed climates of 15 coupled
atmosphere/ocean models as well as that of the ensemble “mean model”. The data are from the
Coupled Model Intercomparison Project (CMIP) described briefly in Meehl et al. (1997).

                            CMIP Models and Data
The array of CMIP models differs considerably in terms of resolution and other model

features as indicated in Table 1 of Lambert and Boer (2000), hereinafter LB. The atmospheric
components (the AGCMs) employ spectral or finite difference numerics and, as an indication of
resolution, the total number of values that specify the temperature or other variable at each
timestep differs by a factor of 10 between AGCMs and by a factor of 15 between OGCMs which
typically have higher resolution than their coupled AGCMs. The suite of subgrid scale physical
parameterizations (radiation, convection, precipitation and cloudiness, boundary layer, etc.) in
AGCMs are strong determinants of the model climate but differences among them in models are
difficult to characterize simply. The OGCMs have a stronger family resemblance than do the atmo-
spheric models since most are some version of the “modular ocean model” (MOM) model and
because OGCMs have fewer subgrid scale physical parameterizations so provide less opportunity
for differences in this aspect. Phillips (1998) gives basic information on the parameterizations
employed in the models.

Finally, some models use “flux adjustment” or, equivalently, “anomaly coupling” to help
ensure that the control climate is reasonable and that climatic feedback processes are operating in
their normal range. Since the flux adjustments are proportional to the differences between simu-
lated and observed values there is a compromise between the size of the flux adjustment and the
size of the error accepted in the coupled models. Of course, as models improve, flux adjustment
will become smaller, as will differences between observed and simulated values in non-flux-
adjusted models, as the two approaches merge.

The atmospheric model data available for CMIP1 analysis, listed in Covey (1998), are
interpolated to a 192x96xL19 grid and similarly for the ocean with L23 levels in the vertical.



Observation-based data are from a number of standard sources (see LB) and are also interpolated
to the common grid.

                  Second order difference statistics
Observation-based quantities  and simulated values  can each be written conceptually as

, the sum of a long-term climate mean , a function of space but not of time,
other forced components , which may be functions of both space and time, and the remaining
random natural variability of the non-linear system where  for sufficiently long averaging
times. Both the mean and any other forced components (such as the annual and diurnal cycles or
forced climate change) are deterministic in that they are the physically determined response of the
system to a particular forcing. The skill of a climate simulation is in correctly reproducing the
forced components together with pertinent statistics of the natural variability as discussed in Boer
and Lambert (2000) for instance.
      We deal here primarily with the global spatial patterns of mean climate variables and   the
implicit assumption is that the long-term averages are well determined. These means are decom-
posed (omitting the overbars) as  under spatial averaging where  is the
global mean,  the zonal average, and where  represents the north-south
meridional structure and  the geographical pattern about the zonal mean. The
strong north-south structure is a dominant feature of many climate variables while the remaining
geographic pattern, although of great practical importance, accounts for less of the total variance.
Differences between simulated and observed quantities are  and
the global average msd is . The total msd or its components can
be written in the form  which relates the msd, the
variances of the observed and modelled quantity and the correlation between them.

 There are 15 models in the intercomparison giving 15 values of each climatological quan-
tity. We adopt a “multi-model ensemble” approach to the analysis of simulated climate. The
ensemble view assumes that each model result represents a plausible solution to the governing
equations and is an independent realization of the climate. The group of CMIP results are a sample
from the set of models based on current knowledge and modelling abilities. The “mean model”
result, , is obtained by averaging over the ensemble of model results indicated by
braces.  may be compared with observations in the same way as an individual model result and

 indicates how successful models are in simulating the
observed climate “on average”. The ensemble or intermodel variance

 gives the “scatter” among model results and indicates
how “consistent’ the models are. To the extent that model differences are random and independent,
they will cancel on averaging,  and  in the idealized limit.
The virtue of the “mean model” result is that even though at any particular grid point there will
very likely be several model results with less error (i.e. with ) when all points are consid-
ered the reverse may well be the case, i.e. , and the mean model msd may be smaller
than that of any model as discussed subsequently in Figures 1 and 2.

 We take  to indicate the degree of convergence of model results and  the average
error. Other ensemble statistics are being investigated in order to further classify and analyze the
information contained in the ensemble. We should like to see that both of these statistics have
decreased in magnitude over time with model improvement. The ratio  may be used to test
if the mean model differs in a statistically significant way from the observed value. If it does so,
then there is clear evidence of systematic error. Certain systematic errors are a common and persis-
tent feature of model results (e.g. Boer et al. 1992, Gates et al. 1999) and their causes are difficult
to identify and to remedy.
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CMIP Results
We concentrate on surface air temperature (SAT), precipitation (P), and mean sea level

pressure (mslp) which are of considerable practical importance and are associated with aspects of
the energy, fresh water, and momentum fluxes between atmosphere and ocean. Figure 1 displays
the globally averaged msd, , between simulated and observed quantities and the components

 indicating differences in the global mean, the meridional structure, and the
geographical pattern. Non-flux adjusted (NFA) results indicated by enclosing their identifiers in
boxes. The “mean model” result is also given.

An alternative, and in some ways more revealing, view is given in Figure 2 which displays
interrelated second order statistics plotted on a new diagram as discussed in Boer and Lambert
(2000) (a related diagram as used by Taylor is reported in Gates et al, 1999). The statistics for the
zonal structure,  and the geographical pattern  are shown separately by dots and triangles
respectively.   North-south structures are comparatively better represented than the geographic pat-
terns and this is particularly true for SAT. The geographic patterns  remaining after subtracting
out the mean and zonal averages of the fields typically have less variance than the meridional
structures and are a sensitive test of the model’s ability to simulate the details of the climatological
distributions of the fields. The relative msds in Figure 2 and are typically larger, and the correla-
tions smaller (actually zero in some cases), than for meridional structures. The structure of SAT is
generally best represented followed by mslp and P and that the DJF season is generally better sim-
ulated than JJA (not shown). Both figures indicate that FA model results are generally closer to the
observations, at least for this generation of models, than are NFA model results although some
individual NFA model results are better than some FA model results. The figures also show that
different models have different errors in different variables and that no model is best for all.

According to Figures 1 the “mean model” is generally the “best model” when measured in
terms of the msd. This is also the case for the related statistics of Figure 2 and particularly so for
the geographic pattern (indicated by the triangles) where the mean model result is visually separate
from the cloud of individual model results.

LB displays a variety of atmospheric and oceanic statistics which cannot be reproduced
here. Figure 3 displays basic zonally averaged distributions of mean sea level pressure and precip-
itation results from coupled models and from observation-based climatologies.They may be com-
pared with similar results for several generations of models developed over several decades and
shown in Boer (2000). Results show that persistent and characteristic differences remain, although
some progress has been made.

Although atmospheric models have been intercompared for some time, this is not the case
for coupled models although there have been some efforts in that direction (Gates et al., 1993,
IPCC1995). It seems safe to say at this state of model development that oceanic results in coupled
models differ more widely than do atmospheric results, and this is especially true at depth. As an
example of one very basic ocean parameter we show as part of Figure 3 some results for the salin-
ity distribution in CMIP models.

                                   Summary
Results for coupled models may be summarized, as in LB, as follows: (1) the current gen-

eration of climate models, on average, reproduce the major features of the observed distribution of
the basic climate parameters; (2) there is, nevertheless, a considerable scatter among model results
and between simulated and observed values; (3) this is particularly true of oceanic variables; (4)
flux adjusted models generally produce simulated climates which are in better accord with obser-
vations than do non-flux adjusted models (as, of course, is the intent of flux adjustment); (5) some
non-flux adjusted model results are, nevertheless, closer to the observations than some flux
adjusted model results; (6) systematic differences, i.e. differences common to most models, are
seen and some of these, i.e. for precipitation and mean sea-level pressure, have been known for

d2〈 〉
d〈 〉 2 d[ ] +2〈 〉 d∗ 2〈 〉, ,

d[ ] + d∗ 2

X∗



some time and show a slow improvement with model evolution; (7) other model differences, such
as resolution, do not appear to provide a clear distinction among model results in this generation of
models; (8) as is characteristic of intercomparison results, different climate variables are simulated
with different levels of success by different models and no one model is “best” for all variables;
and (9) there is some evidence that the “mean model” result, obtained by averaging over the
ensemble of model results, provides an overall “best” comparison to observations for climatologi-
cal mean fields.

                                    References
Boer, G. J., K. Arpe, M. Blackburn, M. Deque, W. L. Gates, T. L. Hart, H. Le Treut, E. Roeckner,

D. A. Sheinin, I. Simmonds, R. N. B. Smith, T. Tokioka, R. T. Wetherald and D. William-
son, 1992: Some results from an intercomparison of the climates simulated by 14 atmo-
spheric general circulation models. J. of Geophys. Res., 97, 12771-12786

Boer, G.J., 2000: Climate model intercomparison. Chapter 3 in “Numerical modelling of the glo-
bal atmosphere in the climate system”. Kluwer Academic Publishers, Dordrecht, the Neth-
erlands.

Boer, G.J. and S.J. Lambert, 2000: Second order space-time climate difference statistics. Accepted
Clim. Dyn.

Covey, C., 1998: CMIP1 model output. At http://www-pcmdi.llnl.gov/cmip/diagsub.html#CMIP1
model output. Program for Climate Model Diagnosis and Intercomparison (PCMDI), the
Lawrence Livermore National Laboratory, Livermore, California

Gates, W.L., U. Cubash, G.A. Meehl. J.F.B. Mitchell and R.J. Stouffer, 1993: An intercomparison
of selected features of the control climates simulated by coupled ocean-atmosphere gen-
eral circulation models. World Climate Research Programme, WCRP-82. WMO/TD No.
574, WMO, Geneva.

Gates, W.L., et al., 1999: An overview of the results of the Atmospheric Model Intercomparison
Project (AMIP), Bull. Amer. Meteor. Soc., 80, 29-56.

IPCC, 1995: Chapter 5, Climate Models - Evaluation, in Climate Change 1995: The Science of
Climate Change. J T Houghton, L G Meira Filho, B A Callender, N Harris, A Kattenberg
and K Maskell (Eds.). Cambridge University Press, UK. 572pp. (ISBN: 0-521-56433-6)

Lambert, S.J. and G.J. Boer, 2000: CMIP1 evaluation and intercomparison of coupled climate
models.Accepted Clim. Dyn.

Meehl, G.A., G.J. Boer, C. Covey, M. Latif, and R. J. Stouffer, 1997:Intercomparison makes for a
better climate model. EOS, Trans. Amer. Geophys. Union, 78, 445-446, 451.

Phillips, T., 1998: Summary Documentation: CMIP I Model Features and Experimental Imple-
mentation (Version 1.0). At http://www-pcmdi.llnl.gov/modeldoc/cmip/index.html. Pro-
gram for Climate Model Diagnosis and Intercomparison (PCMDI), Lawrence Livermore
National Laboratory, Livermore, California



U
K

M
O

N
C

A
R

_W
M

N
C

A
R

_C
S

M

M
R

I

M
P

I_
E

4/
O

M
P

I_
E

3/
L

LM
D

G
IS

S
_R

G
IS

S
_M

G
FD

L

C
S

IR
O

C
O

LA

C
E

R
FA

C
S

C
C

S
R

C
C

C
m

a

d
2 Mean Sea Level Pressure

d
2

120

90

60

30

0

d*
2

M
E

A
N

3

5

6

7

8

9

10

m
b

m
b2

d
2

d
2

d*
2

8.0

6.0

4.0

2.0

0

Precipitation

(m
m

 d
a 

 )-1
2

m
m

 d
a-1

1.0

2.0

d
2 Surface Air Temperature

d
2

d*
2

40

30

20

10

0
1

2

3

4

5

6

° ( C
)2

° C

Figure 1. Mean square differences from observation-based climatology 
or each model and for the "mean model". DJF on left and JJA on right.



▲

CCCma
▲

CCSR▲

CERFACS▲

COLA

▲
CSIRO

▲

GFDL

▲

GISS_M

▲

GISS_R
▲

LMD

▲

MPI_E3/L

▲

MPI_E4/O

▲

MRI▲

NCAR_CSM

▲NCAR_WM

▲

UKMO

Mean square difference d  / σ2 2
obs

__
(percent)

R
atio of variances 

(percent)
2

2obs
σ     / σ

m
od

50

100150

25

50

70

90

95

99

Cor
re

lat
ion

200

25
   

   
   

   
   

   
50

50

10 0 10 25

MSL Pressure
DJF

100

80

10
0

●

●

●

CCCma

●

CCSR

●

CERFACS

●

COLA

●

CSIRO

●

GFDL

●

GISS_M

●

GISS_R

●

LMD

●

MPI_E3/L

●

MPI_E4/O

●

MRI

●

NCAR_CSM

●

NCAR_WM

●

UKMO MEAN

▲
MEAN

▲CCCma

▲CCSR

▲CERFACS

▲COLA

▲CSIRO

▲GFDL

▲GISS_M

▲GISS_R

▲MPI_E3/L

▲
MPI_E4/O

▲MRI

▲NCAR_CSM

▲NCAR_WM

▲UKMO

Mean square difference d  / σ2 2
obs

__
(percent)

R
atio of variances 

(percent)
2

2obs
σ     / σ

m
od

50

100150

25

50

70

90

95

99

Cor
re

lat
ion

200

25
   

   
   

   
   

   
50

50

●
10 0 10 25

Precipitation
DJF

100

80

10
0

●

●

CCCma

●

CCSR

●

CERFACS

●

COLA

●

CSIRO

●

GFDL

●

GISS_M

●

GISS_R

●

LMD
●

MPI_E3/L●

MPI_E4/O

●

MRI
●

NCAR_CSM ●

NCAR_WM

●

UKMO

MEAN

▲MEAN

Mean square difference d  / σ2 2
obs

__
(percent)

R
atio of variances 

(percent)
2

2obs
σ     / σ

m
od

50

100150

25

50

70

90

95

99

Cor
re

lat
ion

200

25
   

   
   

   
   

   
50

50

▲

CCCma

▲

CCSR

▲CERFACS

▲

COLA

▲

CSIRO
▲GFDL

▲GISS_M
▲

GISS_R▲

MPI_E3/L

▲

MPI_E4/O

▲MRI

▲

NCAR_CSM

▲

NCAR_WM

▲

UKMO ▲

LMD

10 0 10 25

Temperature
DJF

100

80

10
0

●

● CCCma

●

CCSR

●

CERFACS

●

COLA

●

CSIRO

●

GFDL

●

GISS_M

● GISS_R

●

LMD

●

MPI_E3/L

●

MPI_E4/O

●

MRI

●

NCAR_CSM ●

NCAR_WM

●

UKMO

●

MEAN

▲MEAN

Figure 2. Second order statistics for individual models and the "mean model". 
           Dots are meridional and triangles the geographic structures
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Figure 3. Zonal structures.
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