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ABSTRACT 

 

To significantly improve the simulation of climate by general circulation models (GCMs), 

systematic errors in representations of relevant processes must first be identified, and then 

reduced.  This effort demands that the GCM parameterizations of unresolved processes, in 

particular, should be tested over a wide range of frequencies, not just at climate scales.  A 

methodology for developing parameterizations in numerical weather prediction (NWP) models 

therefore may be applicable, provided this approach is appropriately adapted for climate GCMs.  

Such an NWP-inspired methodology entails the generation of short-range weather forecasts by a 

realistically initialized climate model, and the use of high-frequency NWP analyses and 

observations of parameterized variables to evaluate these forecasts.  The efficacy of modified 

GCM parameterizations also can be tested in such a weather-forecasting framework. 

In order to further this approach for improvement of parameterizations in climate GCMs, the 

U.S. Department of Energy is funding a joint venture of its Climate Change Prediction Program 

(CCPP) and Atmospheric Radiation Measurement (ARM) Program:  the CCPP-ARM 

Parameterization Testbed (CAPT).  In this article, we elaborate the scientific rationale for CAPT, 

discuss technical aspects of its implementation in a representative climate GCM, and present 

results that illustrate the CAPT methodology.
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1. Introduction 

Climate simulations performed with general circulation models (GCMs) are widely viewed as 

the principal scientific basis for developing policies to address potential future global climate 

change (Houghton et al. 2001). In order to reduce uncertainties in these GCM projections of 

future climate, there is a compelling need to improve the simulation of processes that produce the 

present climate.  This undertaking demands close attention to systematic errors in GCM 

simulations. 

Systematic errors are persistent (average) departures of the model solution from an 

appropriate observational standard.  For example, the GCM systematic climate error is defined 

by the departure of the simulated climate statistics from the observed (e.g. by a difference in 

monthly means).  For GCMs used in numerical weather prediction (NWP), the relevant 

systematic error is defined instead by the mean departure of the model forecast from 

observations at short time scales.   As the length of the forecast increases, the systematic forecast 

error approaches the systematic climate error (Palmer 1999). 

Thus, in order to enhance GCM performance ongoing interdependent efforts are needed:   

1) to diagnose the details of model systematic errors by comparing GCM simulations with 

available observations over a range of time scales;  

     and  

2) to reduce these systematic errors by improving the representation of key processes, and 

thereby increase the accuracy of GCM simulations relative to available observations. 

 

For many years, the Working Group on Numerical Experimentation (WGNE) of the World 

Climate Research Programme (WCRP) has coordinated efforts to diagnose systematic errors in 

atmospheric GCMs (AGCMs).  WGNE, for example, has sponsored conferences on the 

characteristics and causes of systematic errors in GCMs designed both for NWP and climate 

applications (WGNE 1988, Jasper and Meighen 2000).  WGNE also has promoted collaborative 

modelling initiatives such as the Atmospheric Model Intercomparison Project (AMIP) (Gates 

1992, Gates et al. 1999) to analyze systematic climate errors in AGCM simulations made with 

prescribed ocean boundary conditions.  The WCRP Working Group on Coupled Modelling 



 5 

(WGCM) is now extending the diagnosis of systematic errors to climate simulations of coupled 

ocean-atmosphere GCMs (OAGCMs) through initiatives such as the Coupled Model Inter-

comparison Project (CMIP) (Meehl et al. 2000). 

Ongoing efforts to reduce GCM systematic errors entail both enhancements of the resolution 

at which the model state variables (e.g. for AGCMs, the pressure, temperature, moisture, and 

wind fields) are predicted, and fundamental improvements in the parameterizations of unresolved 

subgrid-scale processes (e.g. radiation, clouds, convection, precipitation microphysics, turbulent 

fluxes and diffusion).  In climate simulations, the parameterizations are crucially important for 

correct representation of relevant processes, while the computational costs of increasing 

resolution are very high.  Hence, parameterization development usually is emphasized over 

resolution enhancement as the chief means of reducing systematic errors in GCMs designed for 

climate simulation (hereafter, "climate GCMs")   

The deciding factor in choosing a new parameterization for a climate GCM is whether its 

inclusion brings the simulated climate into closer agreement with the observed statistics.  

However, there are inherent limitations in evaluating GCM parameterizations only in climate-

simulation mode.  First, the observed climate statistics are only roughly known on the global 

scale--to greater or lesser degree, depending on the process of interest (e.g. Kistler et al. 2001).  

Moreover, because the GCM climate state reflects compensating errors in the simulation of many 

nonlinear processes, it is very difficult to attribute these errors to particular parameterization 

deficiencies.  In such a context also, the parameterizations are driven by an unrealistic large-scale 

state, so that it is also difficult to evaluate their performance objectively (Schubert and Chang 

1996).  

For these reasons, climate GCM developers have adopted process-oriented approaches that 

employ high-frequency observations for evaluating parameterizations.  Some effects of 

introducing a new GCM parameterization can be assessed, for example, within the framework of 

single-column models (SCMs) or cloud-resolving models (CRMs) (Randall et al. 1996, Xie et al. 

2002, Xu et al. 2002, Randall et al. 2003).  The strength of this approach is that the column 

parameterizations are driven by an evolving large-scale dynamical state that is specified from 

observations.  However, because all relevant high-frequency dynamical forcings for the 

atmospheric column must be specified, there are only a limited number of observational cases 
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that can be studied with an SCM or CRM.   Feedbacks from the column parameterizations to the 

large-scale dynamics also cannot be represented by these models. 

In order to include such feedbacks, some model developers (e.g. Jeuken et al. 1996, Kaas et 

al. 1999) retain the full GCM, but continuously relax the simulated mass and momentum fields 

toward a high-frequency global weather analysis.  The objective is to constrain the GCM large-

scale dynamics close to reality so that the resulting mean high-frequency tendency errors are 

attributable mainly to parameterized physical processes.  Diagnosis of these high-frequency 

errors then can suggest possible ways to improve the parameterizations, and thereby reduce the 

low-frequency (climate) systematic errors.     

Operational NWP centers follow yet another methodology in developing parameterizations 

for fine-resolution weather forecasting GCMs: the model dynamics are allowed to evolve freely 

and to interact fully with the parameterizations, so that all the forcings and feedbacks are 

generated by the GCM (e.g. Jakob 2003).  In this approach, the state variables of the forecast 

GCM are first initialized by a data assimilation system (DAS) which usually is built around the 

GCM itself.  After ingestion of all available observations (e.g. surface, radiosonde, and satellite 

measurements), the DAS applies variational methods to produce an optimal analysis of the 

global weather that defines the initial conditions for the forecast GCM (Daley 1991, Kalnay 

2003).  In addition, the DAS provides departures of the model from observations that can be used 

to guide further parameterization development. 

Given an accurate analysis, it is reasonable to assume that the model state remains close to 

"truth" in the early period of the forecasts, so that the systematic forecast error can be attributed 

largely to parameterization deficiencies.  This systematic error is estimated from differences 

between the mean of a sequence of short-range (~ five-day) forecasts of state variables and 

corresponding NWP analyses of weather observations.  In addition, errors in parameterized 

model variables (e.g. radiative and turbulent fluxes, cloud properties, precipitation, etc.) are 

estimated from field observations or other data that are not ordinarily assimilated by the DAS 

(e.g. Mace et al.1998, Miller et al. 1999).  Selected model parameterizations then are modified so 

as to ameliorate the perceived deficiencies, and these scheme changes also are evaluated in short-

range GCM forecasts to determine whether they reduce the model's high-frequency systematic 

errors.  If that is the case, the new parameterizations are usually also evaluated in model 
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integrations beyond the deterministic forecast range of ~ 15 days to determine whether they 

reduce low-frequency systematic errors.  

In view of the benefits of applying this NWP development methodology to fine-resolution 

forecast models, some scientists (e.g. Hollingsworth 1998, Miller 1999, Jakob 2003) have 

advocated adoption of analogous procedures for developing parameterizations in coarse-

resolution climate GCMs.  To realize this goal, alternatives to NWP procedures that rely on a 

GCM-compatible DAS must be developed, since many climate models lack such a resource.  

Working relationships also must be forged between GCM developers and parameterization 

specialists who do not always share the same institutional affiliations.   

The U.S. Department of Energy (USDOE) is well-positioned to foster these scientific 

collaborations because of the support it provides to GCM developers through the Climate 

Change Prediction Program (CCPP) and to parameterization specialists through the Atmospheric 

Radiation Measurement (ARM) Program.  Moreover, the extensive high-frequency ARM field 

data that have been collected over the last decade (Stokes and Schwartz 1994, Ackerman and 

Stokes 2003) are potentially very useful for evaluating GCM parameterizations (e.g. Morcrette 

2002).  Hence, the USDOE has established a new joint initiative, the CCPP-ARM 

Parameterization Testbed (CAPT), in order to resolve technical problems in implementing the 

NWP development methodology in climate GCMs, and to facilitate the needed scientific 

collaborations as well. 

The remainder of this article reports on the progress of CAPT to date.  In Section 2, we 

discuss the scientific premise of the project and outline the steps in the CAPT diagnostic 

protocol.  In Section 3, we elaborate on technical aspects of implementing this protocol for 

version 2.0 of the Community Atmosphere Model (CAM2), an AGCM which was developed 

under the auspices of the National Center for Atmospheric Research (NCAR) (Collins et al. 

2003).   We present preliminary results of applying the CAPT methodology to this climate GCM 

in Section 4, and close with a brief summary in Section 5. 
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2.  Premise and Protocol 

CAPT is promoting a diagnostic approach which is new for climate models that are not 

associated with operational forecast centers: the use of six-hourly (6-h) global NWP analyses and 

high-frequency unassimilated observations of parameterized variables (such as provided by 

ARM) to evaluate short-range weather forecasts made with climate GCMs that are initialized 

realistically.   

The CAPT premise is that, as long as the dynamical state of the forecast remains close to that 

of the verifying analyses, the systematic forecast errors are predominantly due to deficiencies in 

the model parameterizations.  In that event, it is appropriate to compare parameterized variables 

with available high-frequency observations collected under the same dynamical conditions, and 

to modify the parameterizations so as to better match these evaluation data.  Finally, if the 

modified parameterizations are also able to reduce the systematic forecast errors, it is probable 

that the GCM climate simulation will improve as well.  

The basic elements of the CAPT protocol are illustrated in Figure 1. First the climate GCM is 

initialized without recourse to a DAS, but with its atmospheric state specified from actual 

synoptic conditions, while also being in approximate dynamical balance (see details in Section 

3b). Next, the climate model is run in a short-range forecast mode, and these predictions are 

compared against the actual evolving atmospheric state, as determined both from NWP analyses 

and unassimilated observations of parameterized variables.  Differences between the model 

predictions and these evaluation data are diagnosed in order to learn more about the performance 

of the model parameterizations, and to suggest needed changes.  The efficacy of modifying the 

parameterizations then can also be evaluated in a short-range forecasting framework 

However, the overriding goal is not that the climate GCM produce the "best" weather 

forecast, but only a good approximation thereof, so that the parameterizations respond to a 

realistic large-scale state.  Thus, even though the weather forecasts of a coarse-resolution climate 

GCM may be inferior to those of a fine-resolution NWP model, relative decreases in systematic 

error are still indicative of improved parameterizations in the climate GCM.  Moreover, the rich 

variety of weather phenomena allows the model parameterizations to be evaluated over a wide 

range of conditions, and at much less computational expense than is required in climate-
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simulation mode. In CAPT, therefore, weather forecasting is viewed as a context for learning 

more about climate GCM parameterizations, and not as an end in itself.   

CAPT Protocol

NWP Analyses 

Data Inputs

Identify Forecast 
& Physics  Errors

Model Development

Modify
Parameterization(s)

Testbed Procedures

GCM

Simulate 
Climate

Initialize 
Realistically

Generate
Forecasts

Identify
Climate Errors

ARM & Other  
Observations

Climate Data

Legend

 

 Figure 1: Flow diagram of the CAPT protocol. 

 

But will the CAPT methodology enhance the performance of the GCM in climate 

simulations?  In principle, yes: modified parameterizations that reduce systematic forecast errors 

should also improve the simulation of climate statistics, which are just aggregates of the detailed 

evolution of the model.  In fact, connections between forecast errors and climate errors are often 

observed in practice.   An example of this in CAM2 is an anomalous split in the Inter-Tropical 

Convergence Zone (ITCZ) which manifests itself very early in the model forecasts, and then 

grows more pronounced with time (Figure 2).   
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Figure 2:  Depiction of Tropical Pacific precipitation anomalies in the CAM2 model. In a) a contour plot of the 
CAM2 mean five-day forecast of 3-h accumulations of longitudinally averaged (between 180 E and 210 E) Tropical 
Pacific precipitation is shown for June 1997.  (Mean is based on 30 five-forecasts,  initiated at 00Z each day.)  Here, 
the precipitation pattern indicates that a split ITCZ develops early in the mean forecast.  In b) it is seen that the 
CAM2 split ITCZ grows more pronounced with time, as evinced by the 180-210 E zonal average of 24-h 
precipitation in the mean five-day forecast and in the monthly mean for June 1997, as well as in a 1980-1995 June 
climatology, both from AMIP simulations.  Note that the southern branch of the zonal-average split ITCZ in CAM2 
precipitation in b) is anomalously intense compared to various estimates of observed zonal-average precipitation 
climatologies, as shown in c) for the Global Precipitation Climatology Project (GPCP, for the period 1979-2002), 
the Special Sensor Microwave Imager (SSMI, for 1987-2000), the Tropical Rainfall Measuring Mission (TRMM, 
for 1998-2003), and the Xie-Arkin (X-A, for 1979-1998) data sets. In all cases, precipitation is given in units of mm 
day-1. 

However, some systematic climate errors develop more slowly. An example in CAM2 is a 

cold bias in the tropical tropopause temperature that sets up gradually, presumably because the 

controlling processes have long natural time scales.  We acknowledge that slow climate errors 

such as these are not as readily amenable to reduction by a forecast-based approach. 

Once parameterization improvements are provisionally indicated by better short-range 

forecasts, enhancements in model performance also must be demonstrated in progressively 

longer (extended-range, seasonal, inter-annual, decadal, etc.) simulations.  GCM 

parameterizations that are improved at short time scales also may require some further "tuning"  

a) b) c) 
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of free parameters in order to achieve radiative balance in climate mode.  Parameterization 

evaluation in climate simulations is therefore a necessary part of the CAPT protocol (Figure 1).  

3. Technical Details 

 Here we elaborate on several aspects of the CAPT protocol, as it has been applied thus far to 

the CAM2 model.  

a. Evaluation data 

The efficacy of the CAPT methodology depends crucially on the accuracy of current NWP 

analyses.  For instance, earlier attempts (e.g. Williamson and Daley 1986) to diagnose 

parameterizations by using analyses to evaluate the weather forecasts of climate GCMs were 

thwarted by the strong influence of the NWP model on the analysis, which had especially 

negative impacts on the accuracy of the analyzed atmospheric moisture and parameterized 

variables. 

NWP analyses now are much better approximations of the actual atmospheric state, as shown 

by recent findings (Hollingsworth et al. 2002) that representative operational short-range weather 

forecasts can track atmospheric observations with an accuracy that lies within current 

measurement uncertainties.  Hence, in observation-rich regions (e.g. continental U.S. and 

Europe), the analyses from modern NWP operational DAS's (and, by extension, multi-decadal 

reanalyses) can be regarded as reliable references for identifying errors in GCM short-range 

forecasts.  We therefore are using the latest high-frequency (6-h) reanalyses of the European 

Centre for Medium-Range Weather Forecasts (ECMWF ERA-40, ECMWF 2002) and of the 

National Centers for Environmental Prediction (NCEP/DOE R2, Kanamitsu et al. 2002) as the 

main data for global evaluation of the CAM2 short-range weather forecasts.   

NWP reanalyses are not sufficient, however, to evaluate all aspects of a GCM forecast, since 

they cannot furnish precise checks on physical forcings.  (Estimates of these forcings from 

current reanalyses strongly depend on the parameterizations of the analysis GCM.) Thus, 

ancillary high-frequency observations such as the ARM field data are indispensable for 

independent evaluation of GCM parameterizations. Moreover, field observations of state 

variables can corroborate the NWP analyses in identifying local forecast errors. 
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ARM field data at 6-h and higher frequencies  (in some cases, at frequencies comparable to a 

GCM time step of 30 minutes) are available at sites in the U.S. Southern Great Plains (SGP), the 

North Slope of Alaska (NSA), and the Tropical West Pacific (TWP) (ARM 2002).  The most 

comprehensive high-frequency observations are supplied during sporadic intensive observation 

periods (IOPs) at the ARM SGP site, such as April 1997 and June/July 1997 (Table 1).  

Table 1. Available observations during ARM intensive observation periods (IOPs) at the Southern Great Plains 
(SGP) site.  Note: NOAA denotes the National Oceanic and Atmospheric Administration, GOES the Geostationary 
Operational Environment Satellite, SIRS the Solar Infra Radiation Station, EBBR the Energy Budget Bowen Ratio, 
MWR the Microwave Radiometer. U, V, T, and RH represent horizontal winds, temperature, and relative humidity, 
respectively. LWT and SWT are the top-of-atmosphere longwave and shortwave radiative fluxes.  CLDTOT, 
CLDHGH, CLDMED, and CLDLOW are the total, high, middle, and low level cloud amounts, respectively.  LWS 
and SWS are the surface longwave and shortwave radiative fluxes.  LH is the surface latent heat flux, SH the surface 
sensible heat flux, PW the column precipitable water, CLW the column cloud liquid water, and PREC the surface 
precipitation. Us, Vs, Ps, Ts and RHs are the surface u and v wind components, pressure, air temperature, and 
relative humidity, respectively. 

Instruments Sampling frequency Measured fields 

ARM Radiosondes 3 hours U, V, T, RH 

NOAA Wind Profilers 1 hour U, V 

GOES 30 minutes LWT, SWT, CLDTOT, CLDHGH, 

CLDMED,CLDLOW 

SIRS 1 minute LWS, SWS 

EBBR 30 minutes Surface LH,SH 

MWR 5 minutes Column PW and CLW 

Surface Mesonet Stations 5-30 minutes Surface PREC,Ts,Us,Vs,Ps, RHs 

Cloud Radar, Micropulse Lidar 10 seconds -1 minute Cloud frequency and properties 

 

In contrast to methods relying on SCMs or CRMs, CAPT can utilize other data sets that are 

not as comprehensive as those of ARM, such as coordinated satellite, aircraft, and surface 

measurements that have been collected during one-time field campaigns. For example, data sets 

of this type have been centralized for investigations conducted by participants in the Global 

Energy and Water Cycle Experiment (GEWEX) Cloud System Study (GCSS 2002, Randall et al. 

2003).  Similar field data at some 30 other sites are being collected during the 2003-2004 

GEWEX Coordinated Enhanced Observing Period (CEOP) (Bosilovich and Lawford 2002).   
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To make such observations fully relevant for model evaluation, the data should be aggregated 

to the scale of a GCM grid box. Hence, observations of forcings in different locations at the 

ARM SGP site have been spatially averaged, and atmospheric state variables also have been 

subjected to objective variational analysis to ensure overall conservation of heat, moisture, and 

momentum (Zhang and Lin1997, Zhang, et al. 2000).  On the other hand, some GCM 

parameterized variables (e.g. cloud properties) need to be translated into quantities that can be 

compared more readily with observations.  For example, we are currently exploring use of the 

International Satellite Cloud Climatology Project (ISCCP) simulator (Klein and Jakob 1999, 

Webb et al. 2001) for this purpose in CAPT.  

b. Initialization procedures 

Like many climate models, the CAM2 lacks a compatible DAS (although a community data 

assimilation testbed is under development--see online information at http://www.cgd.ucar.edu/ 

DART), and so it is necessary to devise simple alternatives to standard NWP initialization 

procedures.  Because of their high accuracy, it is feasible to use NWP reanalyses to initialize the 

model.  It is also desirable to use atmospheric reanalyses from diverse NWP analysis models, so 

as to estimate the sensitivity of the CAM2 parameterizations to this difference. Hence, we are 

using both the ECMWF ERA-40 and NCEP/DOE R2 reanalyses to initialize the CAM2 model.  

This entails a three-dimensional mapping of finer-resolution reanalysis data to the coarser 

(spectral T42/L26) CAM2 resolution. 

Operational NWP centers routinely map state variables from high-resolution operational 

analyses to lower resolutions in order to provide initial conditions for their ensemble forecast 

systems, and for developmental research forecasts.  These mapping procedures also have been 

applied when exchanging analyses between operational centers, for example to investigate the 

effect of the initial conditions on specific forecasts (e.g. Harrison et al. 1999).  We have 

successfully adopted the relevant NWP algorithms (White 2001), even though these normally are 

not applied for resolutions as coarse as those of typical climate GCMs.  

As noted previously, our objective is to obtain a good estimate of the atmosphere/land initial 

conditions, rather than a state which gives the best forecast. Although operational centers might 

still include a mass-momentum balancing phase ("initialization", in NWP parlance) after the 

resolution change, we have found our forecasts with CAM2 initialized from both the ECMWF 
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ERA-40 and NCEP/DOE R2 reanalyses to be relatively noise-free. Should initialization noise 

arise in specific cases, a temporal digital filter could easily be included (Lynch and Huang 1992, 

Polavarapu et al. 2000).  

For our prototype implementation, initial values for the prognostic parameterized variables 

(e.g. cloud water in the CAM2 model) are obtained via spin-up procedures that are described 

below in conjunction with the land initialization.  These methods are presently adequate because 

the time scales for the adjustment of the parameterized variables are relatively fast, and the 

model errors are currently very large. As a future refinement, we will need to develop mapping 

procedures for these prognostic parameterized variables as well. 

Initialization of the land is particularly problematical because it is difficult to map discrete 

and discontinuous land variables between different resolutions, especially when there may be 

different definitions of these variables and different land types in the systems that are involved in 

this mapping.  Thus far, we have applied two procedures to spin up land and atmospheric 

parameterized variables. Both allow the land model (and parameterizations) to interact with and 

respond to the forcing from the atmospheric model while the latter is constrained to follow the 

evolution of the observed atmosphere.  We refer to these two methods as "forecast/analysis" and 

"nudging".   

The forecast/analysis method periodically updates (e.g. at 6-h intervals) the atmospheric state 

variables with the interpolated analyses, and lets the coupled land/atmosphere system evolve 

until the next update time. This is akin to the current 6-h update cycle of an NWP DAS (such as 

that used for the NCEP R1 reanalysis--see Kalnay et al. 1996), except that here the atmospheric 

assimilation phase is replaced by the mapping of a high resolution reanalysis to the climate 

model grid.  

The nudging method involves the addition of terms to the atmospheric equations to relax 

predicted state variables toward the reanalysis at a specified (e.g. 6-h) time scale. This procedure 

has been used, for example, to generate a smooth start for NWP model forecasts (Hoke and 

Anthes 1976).  

In order to indicate the minimum period needed for either of these spin-up methods to 

converge to the best state it is able to provide, we have performed "perfect model" experiments 

(i.e. using the outputs of the CAM2 as input to the forecast/analysis initialization).   In these 
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simulations, the CAM2 soil moisture, for example, spins up to "correct" values in a few months, 

except when snow is present. Hence, these simple spin-up methods might be generally applicable 

in tropical regions, as well as in warm-season observational periods at the ARM SGP site and 

other mid-latitude locations. Spin-up methods appropriate for snow-covered regions will require 

further development. 

In mapping from analyses to the climate GCM, there is some (probably small) risk of 

obtaining a false response to a parameterization change.  However, in order to produce an initial 

atmospheric state that is model-consistent, it would be necessary to use a DAS that is based on 

the GCM, thereby excluding from consideration many climate models that lack this capability.  

Moreover, to produce the best estimate of the initial state, the DAS would need to be run at 

higher resolution than is typical for climate simulation, since even the large scales in NWP 

analyses are improved with enhanced resolution.  

c. Model forecasts  

The current CAPT practice is to generate five-day (0-120 h) GCM forecasts for each day 

during the time period of interest (e.g. an ARM IOP), and to archive the forecast data at intervals 

that match the sampling of the field observations (e.g. at 3-h frequencies for comparison with 

ARM variational analysis data).  For each forecast, the model atmosphere is initialized by 

applying either the nudging or forecast/analysis methods described previously.  We also compute 

the mean, at some elapsed time, of a sequence of forecasts that are initialized on different days.   

This mean forecast may be calculated from model predictions that are initiated on consecutive 

days, or alternatively from forecasts that are stratified according to similar initial conditions, so 

as to assess the sensitivity of the model parameterizations to particular synoptic or seasonal 

conditions (Jakob 2003). 

We also compute the difference between the mean forecast and corresponding evaluation 

data, as a way of estimating the GCM systematic forecast error.  Both the magnitude and pattern 

of this systematic error are of diagnostic value, and these can be quantified using standard NWP 

metrics defined by the World Meteorological Organization (WMO 1999). For example, the mean 

bias and root-mean-square (RMS) statistics provide information on error amplitudes, while 

anomaly correlations supply error-pattern information.   
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4. Results 

In this section, we show selected results of applying the CAPT protocol to the CAM2 model 

that illustrate the concepts previously discussed.   

In order to verify that our simple initialization procedures are able to produce a large-scale 

dynamical state that is close to that of the verifying analyses, we have evaluated the skill of the 

CAM2 forecasts of the 500 hPa height field, following established guidelines (WMO 1999).  For 

example, we computed the mean anomaly correlation (AC) of these forecasts (a commonly 

accepted measure of forecast skill), where the verification anomalies were calculated from a 

thirty-year monthly mean climatology of the ECMWF ERA-40 reanalysis for the period 1970-

1999.  (The AC calculations were found to be insensitive to the choice of climatology.)  

Figure 3 shows the AC decay (spatially averaged mean AC as a function of forecast day) of 

the CAM2 model forecasts, initialized from both the ECMWF ERA-40 and the NCEP/DOE R2 

reanalyses, during the April and June/July 1997 ARM IOPs.  These are compared with the AC 

decay of analogous forecasts from the models that generated the ECMWF ERA-40 and 

NCEP/DOE R2 reanalyses, where values less than 0.6 indicate an absence of forecast skill.   

.  In general, the CAM2 forecasts of 500 hPa heights are seen to be surprisingly "competitive" 

with those from the two NWP models.  In particular, the AC decay of the CAM2 in the first two 

forecast days is small, implying that its dynamical state remains close to those of the reanalyses 

during the early part of the forecast.  The skill scores of the CAM2 forecasts show greater 

separation in the Southern Hemisphere (Figures 3b and 3d), indicating a generally stronger 

dependence on initial conditions, and a somewhat higher accuracy of the ECMWF ERA-40 

reanalysis relative to the NCEP/DOE R2.   As expected, the AC decay of all forecasts is more 

rapid during boreal summer (Figure 3c) when mid-latitude synoptic control is weaker and 

forecast skill is more strongly influenced by physical processes.   The comparatively low decay 

of the ECMWF ERA-40 model skill in this season thus attests to the quality of its physical 

parameterizations. 
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Figure 3:  Mean anomaly correlation (AC) for a sequence of forecasts of 500 hPa heights made with three GCMs as 
a function of forecast day during the April 1997 ARM IOP (panels a and b), and during the June/July 1997 IOP 
(panels c and d).  In all cases, the AC is interpolated to a common 2.5-degree global grid and spatially averaged 
(with cosine-latitude weighting) over the mid-latitudes of the Northern and Southern Hemispheres (20 N-90N and 
20S-90S, respectively).  Results are shown for the ECMWF ERA-40 reanalysis model initialized with its own 
analyses (in blue); the NCEP/DOE R2 reanalysis model initialized with its own analyses (in red); the CAM2 model 
initialized with ECMWF ERA-40 reanalyses (in green); and the CAM2 model initialized with NCEP/DOE R2 
reanalyses (in yellow).    

d) 

b) a) 

c) 



 18 

To place these results in perspective, we also compare the CAM2 scores at day 5 with two 

operational NWP models for the April 1997 IOP period and for subsequent Aprils in the years 

2000 and 2003 for the Northern Hemisphere mid-latitudes (Table 2).  The fact that the CAM2 

five-day AC is higher than representative operational NWP models in 1997 demonstrates that a 

coarse-resolution climate GCM can make credible forecasts of the large-scale synoptic flow 

when initialized with an accurate NWP reanalysis (e.g. ECMWF ERA-40).  Further, the higher 

accuracy of  the ECMWF ERA-40 reanalysis implied in Figure 3 is in part a result of more 

recent (circa 2000) NWP technology, as indicated by the skill trend of the operational models 

from 1997-2003. 

Table 2.  Anomaly correlation at day 5 of CAM2 forecasts of Northern Hemisphere 500 hPa heights for the April 
1997 (1997-04) ARM IOP period compared with that of forecasts from the NCEP and ECMWF operational models.  
CAM.ERA-40 denotes the CAM2 model initialized with ECMWF ERA-40 reanalysis; NCEP ops and ECMWF ops 
are the respective operational model scores, which also are shown for comparison in April of 2000 (2000-04) and 
2003 (2003-04). 

Model 1997-04 2000-04 2003-04 

CAM.ERA-40 0.83   

NCEP ops 0.74 0.73 0.84 

ECMWF ops 0.78 0.84 0.89 

 

However, the relatively high skill of CAM2 forecasts of the 500 hPa heights does not 

generally carry over to predictions of large-scale atmospheric moisture, which is tied more 

directly to the model's physical parameterizations. This model shortcoming is found locally as 

well, for example in evaluating a sequence of CAM2 daily forecasts of atmospheric relative 

humidity at the ARM SGP site during the period 19-25 June 1997 (Figure 4).  Here it is seen that 

the temporal variation of the vertical profile of relative humidity obtained from the ARM 

measurements (Figure 4a) and from the ECMWF ERA-40 reanalysis (Figure 4b) are quite 

similar.  Relative to these evaluation data, the CAM2 forecasts a lower troposphere that is too 

dry, and an upper troposphere that is too moist in the first few days of this period.  (The CAM2 

does successfully forecast the moisture plumes associated with convective events on June 23/24, 

however.)   
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Figure 4: Plots of the vertical profile of atmospheric relative humidity (in %) at the ARM SGP site are shown at 3-h 
intervals for the period for 19-25 June 1997, as obtained from a) ARM observations, b) the ECMWF ERA-40 
reanalysis, and c) a sequence of CAM2 forecasts that are initialized at 00Z each day and valid for the period 03Z-
24Z (but with the 00Z value shown for June 19 supplied by the 24Z forecast for June 18).  Note, the apparent diurnal 
cycle in the relative humidity profile in c) is, in actuality, evidence of the rapid departure of the CAM2 forecasts 
from a realistic humidity profile after their initialization at 00Z each day.  

The anomalous CAM2 relative humidity profile on June 19-22 is indicative of a model 

systematic error, as revealed both by the mean five-day model forecast relative to ARM 

observations during June/July 1997 (Figure 5a) as well as by the CAM2 June/July climatology 

relative to the ECMWF ERA-40 and NCEP/DOE R2 reanalyses (Figure 5b). Given the relatively 

skillful model forecast of large-scale dynamics during this period (Figure 3c), these results imply 

that there are both high- and low-frequency systematic deficiencies in the CAM2 moist physics 

parameterizations.   

It is just such parameterization deficiencies that are appropriate to study further in the CAPT 

framework.  For instance, the overly dry CAM2 lower troposphere during June/July 1997 at the 

ARM SGP site is consistent with the model's propensity to rain out moisture nearly every day, 

rather than in the episodic bursts that are observed (Figure 6b).  In contrast, the agreement 

between CAM2 precipitation forecasts and observations is generally much better during the 

April 1997 IOP (Figure 6a), when large-scale advective forcing is a more significant contributor 

to the column moisture balance (analysis not shown). 

c) 

a) b) 
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Figure 5: Systematic errors in CAM2 predictions of the vertical profile of atmospheric relative humidity at the ARM 
SGP site relative to ARM observations (in %) are displayed for different time scales.  In a) the evolution of  the 
mean difference between CAM2 five-day forecasts of the relative humidity profile (initialized at 00Z each day of  
the June/July 1997 IOP) and the corresponding ARM observations is shown.  Note the rapid growth of CAM2 
relative humidity errors early in the mean five-day forecast and their subsequent diurnal variation, especially in the 
upper troposphere. In b) differences are shown between a ten-year June/July climatology of the CAM2 relative 
humidity profile (generated in an AMIP simulation) and corresponding climatologies obtained from the ECMWF 
ERA-40 reanalysis (solid line) and from the NCEP/DOE R2 reanalysis (dashed line).  Note similarities in the 
vertical distribution of the CAM2 systematic errors (overly dry lower troposphere above the boundary layer, and 
overly moist upper troposphere) at both forecast and climate time scales. 

a) 

b) 
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a) 

b) 

c) 

Figure 6: Comparisons of 3-h accumulations of precipitation (in units of mm/day) at the ARM SGP site, as observed 
(solid line), and as forecast by the CAM2 (dashed line), where the large-scale atmospheric state of the model was 
reinitialized each day from ECMWF ERA40 reanalysis. In a), the comparison is for the April 1997 IOP, while in b) 
it is for the June/July 1997 IOP; in both cases, the forecasts were made with the standard version of CAM2 (denoted 
as CAM2O) that employed the Zhang-McFarlane parameterization of deep convection.  In c) are shown forecasts of 
June/July 1997 precipitation made with a version of the CAM2 (denoted as CAM2M) that included a modified 
(DCAPE) convective triggering mechanism.  See text for further details. 
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This apparent seasonal sensitivity implies there may be deficiencies in the CAM2 

parameterization of convective precipitation (although this is certainly not the only possible 

source of error).  In particular, the characteristics of the CAM2 precipitation displayed in Figure 

6b are reminiscent of problems previously identified in the triggering mechanism of the model's 

Zhang-McFarlane (1995) deep convection scheme when implemented in an SCM (Xie and 

Zhang 2000).   These deficiencies were alleviated by replacing the standard trigger based on 

positive convective available potential energy (CAPE) with one based on the rate of dynamic 

CAPE (DCAPE)  generation  by large-scale advective tendencies of temperature and moisture. 

We recently have implemented the DCAPE convective triggering mechanism in the CAM2 

and have analyzed the effects on its precipitation forecasts.  Because CAPE can accumulate 

before convection occurs in the modified CAM2, stronger but less frequent precipitation events 

are produced by the new scheme, yielding generally better agreement with ARM observations 

(Figure 6c).   Further evaluation of the performance of this new convective scheme in an AMIP 

climate simulation is currently in progress. 

5. Summary 

CAPT is motivated by the experience of GCM developers that it is very difficult to unravel 

model parameterization deficiencies solely by diagnosing the simulated climate, which includes 

systematic errors resulting from nonlinear interactions of many different processes.  Our premise 

is that studying climate GCM parameterizations in a weather-forecasting framework is an 

effective way to identify their deficiencies and to gain insights on their improvement. 

The overarching goal of CAPT is to enhance the performance of GCM parameterizations, as 

indicated by a reduction of systematic errors that is manifested initially in short-range weather 

forecasts, but ultimately in climate simulations.  We acknowledge, however, that slowly 

developing systematic climate errors probably will remain resistant to significant reduction by 

this methodology.  

Thus, CAPT is not a panacea for improving climate GCM parameterizations at all time scales, 

but just one choice from a "toolkit" that may also include, for example, SCMs, CRMs, and 

simplified GCMs.  Nonetheless, we expect that insights obtained from adopting this NWP-

inspired methodology will contribute significantly to the general improvement of GCM climate 

simulation.   
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