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Abstract

The technique of common principal components (Flury, 1988) is applied to com-
pare the resultz of a number of GCM simulations. The data used are from 30 AMIP
simulations and an ensemble of five AMIP integrations from a single GCM. As sug-
gested by the name, the common principal com ponents analysis of these data identi-
fies the common elements of the integrations. The components are determined in the
spatial domain. The results are for the seasonal cyele of precipitation over the 1S and
for the seasonal and interannual variations of global 200 hPa divergence.

The precipitation analysis shows that the models share only the broadest aspects
of the seasonal cycle in precipitation and the common veector loadings vary substan-
tially between the models. The analysis of the ensemble integrations for the same
variable indicates that the model variations are generally quite a bit larger than the
variations amongst the members of the ensemble. The ensemble results give some
confidence that the differences am ong the models are robust and that they would not
change greatly for other realizations of the modael integrations. In itself, the ensemble
analysis displays the usefulness of the CPC technique in suceinctly combining the
output of any number of realizations from a given model. Their common character is
a robust signal and is the answer often sought from ensemble experiments,

The CPC analysis of the five ensemble simulations shows that the interannual
variations in the divergence are dominated by the ENSO events for the AMIP decade,
1979-1988 The analysis indicates that the ENSO global signal i= robust across all the
simulations such that one simulation is all that is necessary to characterize the global
response. The intrinsic variability of the model begins to dominate the components
higher than the first.

The difference between the 200 hPa divergence of four closely related AMIP mod-
els and the NCEP /NCAR reanalysis was analyzed using the CPC technique. The
models all share the ECMWF dynamical core. When compared to the analogous anal-
ysis of the ensembles, it is seen that the models form two distinct pairs although some
distinctive characteristics are retained. The CPC is shown to have value in document-
ing the impact of modifying parameterizations on the simulations,

The CPC analyses tend to support the observation that the models often have
more in common with each other than with the observations. The CPC approach has
utility in answering many useful questions posed in the arena of model comparison
when used in conjunction with other techniques,



1. Introduction

The Atmospheric Model Intercomparison Project (AMIP) of the World Climate
Research Programme provides an infrastructure for the comparison of atmospheric
general circulation models (AGCMs) and their response to the specified SST varia-
tions. The participants in AMIP simulate the global atmosphere for the decade 1979

‘to 1988 using a common solar constant and COg concentration, and a common se-

quence of monthly averaged SST and sea ice data set. An overview of AMIP is provid-
ed by Gates (1992). In this work a statistical tool is presented to address the task of
model comparison and verification. l

 The AMIP was intended to document the state of AGCM modeling and to facili-
tate diagnosis of the causes of any differences that showed themselves. The models do
display a number of large differences, but it is not a trivial task to figure out the caus-
es of these. For example, the tendency of the models to have poles which are too cold
and a tropical region which is too warm has been documented for some time (Boer et
al., 1991), but if there is any fundamental flaw which explains this error it has yet to
be unambiguously identified. | |

There have been numerous useful statistical techniques put forth for the pur-
poses of model verification and analysis. Many of these have as their major thrust a
pairwise comparison. The model output is compared to the observations (e.g. 500 hPa
geopotential) or the relationship between two variables(e.g. SST and precipitation) is
examined between the models and the observations. This approach is well summa-
rized in the comprehensive work of Bretherton et. al (1992). The AMIP analysis pre-
sents a slightly different variation on this theme. The large number of models to
compare ( ~30) places a practical restriction on the type of pair-wise analyses that can
be carried out. There is also value in ascertaining the systematic errors that cut
across all the models. Presumably, such errors would indicate a fundamental gap in
understanding or a defect in parameterization implementation that might be correct-
ed if identified.

The desire for a concise analysis of systematic errors gives rise to two potentially
conflicting requirements. First, there is a need for a parsimonious representation of
the model and observed spatial and temporal evolution to facilitate comparison given
the large mass of data. Second, it is important to be able to identify the physical pro-
cesses that are related to the model errors and so the analysis needs to preserve suf-



ficient spatial and temporal detail so that this can be accomplished. For example,
global mean temperature is an efficient reduction of the temperature data, but these
data alone will most likely not reveal the processes responsible for deviations from the
observations.

An additional complicating factor in model verification comparison is the realiza-
tion that the models are chaotic in the sense that some aspects of a simulation can
change substantially when started from a slightly different set of initial conditions. It
is important to be able to isolate the common aspects of an ensemble of model simu-
lations. These aspects are presumably the robust features that are representative of
systematic errors and basic behavior of the model.

The purpose of this paper is to put forward the technique of Common Principal
Components (CPC, Flury 1988) as a framework for model comparison and as a useful
way to incorporate ensemble information. This technique has been applied recently
to the comparison of ocean models by Frankignoul et al. (1995). This technique will
be seen as a useful complement to the other anal ¥51s tools documented in the litera-
ture.

In the next section the basic concepts associated with CPCs will be outlined and
some comparisons drawn to previously published techniques. In section three the
data sets used in the following applications are described while section four presents
a number of applications of the CPC technique. These point out the usefulness and
interpretation of the CPCs and how they might complement other methods. This see-
tion also makes some points about the character of the AMIP integrations. Section
four discusses some conclusions and extensions of the techniques, and a summary of
a strategy for model comparison, including ensemble integrations, '

2. Common Principal Components

Common principal components are most easily described in comparison to the
closely related principal component analysis. Principal components(PC), also referred
to as Empirical Orthogonal Functions{EOF), have a long history in atmospheric anal-
¥sis since being introduced by Lorenz (1956). PCs are invaluable tools in that they
provide an efficient method of compressing the data in both space and time and
prezent the results in terms of independent modes of variability, The pri ncipal vectors
are the eigenvectors of the data covariance matrix whose elements are formed from
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the differences from some specified means. Each successive eigenvector is orthogonal
to the set of previous ones and explains the maximum amount of possible remaining
variance in the data. The eigenvectors are usually arranged in order according to the
percentage of variance explained. The PCs are derived directly from the data them-
selves as opposed to some a priori set of functions such as in Fourier analysis. Often,
but not necessarily, the leading vectors can be associated with some aspects of phys-
ical processes.

CPC is a generalization of the PC technique to the case of several groups. Rather
than a single covariance matrix, there are now two or more. The basic assumption is
that the principal component transformation is identical in all the populations con-
sidered, while the variances associated with the components may vary between
groups. Thus, similar to PC analysis, the output of the CPC results in a set of spatial
patterns (vectors), but unlike PCs there are more than one time series associated
with each pattern set. The ordering of the eigenvectors varies by group, and it is by
Do means necessary that all the groups share the same ordering of the vectors. An ad-
vantage in using the CPC model is that one can compare corresponding principal com-
ponénts. A formal test of significance for the hypotheses of (partial) commonality of
the principal axes of representation of two (or several) fields of data along the line giv-
en in Flury (1988) is, however, not possible to implement directly. These tests of sig-
nificance require that the sample fields (over discrete time instants) be independent.
This is generally an incorrect assumption for almost all meteorological fields. This
problem itself does not preclude the use of common principal components as a diag-
nostic tool for understanding the commonality of the fields. The temporal correlation
can also be addressed by a sparser temporal sampling. This is impractical for the
short span of time represented by the AMIP simulations, but could be implemented
for much longer integrations.

In terms of pairwise comparisons there exist powerful techniques, summarized
in Priesendorfer(1988) and Bretherton et al. (1992). If there is a fiducial field to com-
pare against, say the observed fields, then a commonly used method is to determine
how the principal modes of the other grbups project onto those of the basefield. The
CPC analysis does not replace this technique, but rather complements it. The most
effective means to illusfrate how the CPC analysis can complement other methods is
to provide some examples. As with any diagnostic technique there are situations
where its use is inappropriate and other times when it can provide useful informa-



tion. The next two sections will present examples on data sets where the CPC tech-
nique has proved useful.

The algorithm used for determining the common eigenstructure was that of
Flury and Gautschi (1986). The code was tested against the IMSL (1991) routine
EPRIN and the results were identical. The IMSL routine was not used since it was
desired to have access to some intermediate results and the IMSL routines were un-
able to permit this. The covariance matrices were computed using the IMSL routine
CORV. The principal eomponent analysis was carried out using the IMSL routine
PRIN.

4. Data sets

The data used consisted of observationally based analyses and the corresponding
fields produced by AMIP simulations. The data were all monthly means for the 120
maonths from January 1979 to December 1935,

Precipitation over the U.S.
The data used in this part of the study consists of precipitation observations grid-

ded to a 4 degree latitude by 5 degree longitude grid. The observations are from sur-
face stations over land from Schemm et al. (1992), and satellite Microwave Sounding
Unit (MSU) estimates from Spencer (1993) over the aceans. The bulk of the analysis
grid used here is over the United States, where the observational network provides
reliable precipitation fields. The 120 month mean was subtracted from each gridpoint
to form the deviations. The seasonal eycle was retained since it was of interest to com-
pare how well the GCMs simulated this cycle. The data comprised a matrix of 120
time points at 95 space peints. Figure 1 shows the spatial coverage of the data. The
model data were interpolated to the observational grid using an area weighting
scheme which preserved the spatial mean.

Global velocity potential
The input data for these calculations was the velocity potential computed from

the 200 hPa winds. The observational data were from the NCEF/NCAR reanalyses.
The model data were from two sources: the first was the from the AMIP integrations,
and the second was a small ensemble of AMIP integrations using the ECMWF AMIP
model. This ensemble had five members, each integration differing only in the initial
conditions used. The initial conditions for the first run were the observed data for 1



Jan 1979, while the initial conditions for the subsequent runs were taken from the
ending state of the previous run.

All the data were transformed to the orthogonal spherical harmonies and the
spherical harmonic series was truncated at T10. This limits the results to large scale
features but allows a fit in the spatial domain since there are 110 spatial coordinates
(110 coefficients of the spherical harmonics decomposition) and 120 time points. This
truncation is also well within the horizontal resolution of all the AMIP models. From
the basic monthly data two sets of deviations were computed for the covariance ma-
trix to be used for intercomparison. The first described the interannual variations, in
which the seasonal eycle was removed by subtracting from each month the 10 year
mean of that month. The second set retained the seasonal cycle but computed the dif-
ferences between the models and the NCEF/NCAR reanalysis fields for the 120
months of the AMIP decade. Insofar as the reanalysis depicts reality these data could
be considered error fields. From these sets of spherical harmonic data the covariance
matrices were formed for input into the PC and CPC algorithm,

3. Applications of CPCs to Data

U.S. precipitation
The leading two principal vectors of the observational precipitation data set are
shown in Fig. 1. The time series of the leading three principal vectors are in Fig. 2,
while the percent variance explained by the leading four PCs is shown in Table 1. The
leading PC can be interpreted in terms of the seasonal cyele of precipitation described
by Hsu and Wallace (1976) and Horn and Bryson (1960). There is a winter maximum
of rainfall on the west coast and off the Gulf and east coast, and a summer maximum
in the central US. It is useful to point out the high level of interannual variability dis-
played by the principal components in Fig. 2. The PVs were also computed from the
30 individual precipitation fields of the AMIP models. Just consideri ng the first two
vectors, this meant comparing 60 figures. From a first examination of the PVs. the
madels appeared to be very poor in their simulation but it was difficult to make any
general categorization. A CPC analyses was then performed on the 31 data sets (30
models + observations). The percent variance explained by the leading three CPCs for
the observations iz shown in Fig. 3.
Figure 3 can be used to illustrate a few points about this analysis. The first is
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that the percent variance explained can be ordered differently for each data set. In
Fig. 3 we have arbitrarily chosen to use the ordering of the observed data set, but for
some models these are clearly not the leading sequence. The second point is that the
common moede dominant ameng the models is not the first mode for the observations,
but the second mode. This information was quite useful in making sense of the PV
charts of the individual models. Going back to the individual plots of the PVs and com-
paring the second PV of the observations to the leading FV of the models indieated a
systematic problem with many of the models in depicting the precipitation over the
eastern and central US. This correspondence was not at all obvious when trying to
look through all the eharts due to the man y slight variations displayed. The dominant
seasonal cycle of the models resembles Fig. 1b, rather than la. The models tend to
place the precipitation characteristic of the central US too far eastward. Figure 3
lends credence to the common wisdom that the models tend to look more like each oth-
er than the real atmosphere.

InFig. 3 it can also be noted that the models generally have a larger percent vari-
ance for a single CPC mode than do the observations. Those that do not in the three
vectors displayed inevitably have such a component elsewhere. This is also true for
the individual PC computations. Note that the percent variance of the observational
data set has dropped substantially between Table 1 and Fig. 3. In Fig. 3, the fit is to
a common set of vectors, and the models have such a large variation compared to the
observations that the common fit cannot be expected to be as good as in the PC case.
The corresponding CPC veectors for the observed set (not shown) do, however, bear a
tlose qualitative resemblance to Fig. 1. Table 2 gives the percent variance explained
by the leading principal components of the UCLA AMIP model, whose data are fairly
typical of the model behavior. The steeper spectrum is an indieation that the models
occupy a simpler world than that depicted by the observations in Fig. 2 and Table 1.
Figure 4 shows the time series of the leading three PCs of the UCLA model; every
year is much like the next.

Beyond common characteristies of the models, Fig. 3 illustrates the substantial
differences between the models. The models with low wvalues in Fig. 3 do not have a
large variance explained by any of the three leading CPCs of the observations. These
cutliers have less in common with the observations or wiht other models whoze
peaks in variance explained occur at other components. The models and observations
do share a common variation in the west coast precipitation. This is likely a conse-



quence of the fact that the models all use the same set of observed SSTs which play
an important, and evidently dominant, role in determining the variation of the rain-
fall in the western US.

This example illustrates that the CPC analyses can illuminate some key differ-
ences and commonality of the models and observations. These facts can then be taken
into account as other tools are brought to bear on the problem. It can guide the choice
of pair-wise comparisons, or indicate models that are so far off that they might not be
profitable to examine further.

200 hPa velocity potential

Ensemble comparison

Outside the arena of multiple model comparison, the analysis of ensembles of
simulations presents the potentially most useful aspect of CPCs for the analysis of
GCM output. ,

Figure 5 presents the time series of the leading CPC for the 200 hPa velocity po-
tential for the five simulations of the ECMWF model ordered with respect to the
AMIP simulation. These data represent the interannual variations, the monthly
means being removed. The ensemble members all share the same first four CPCs, al-
though they vary slightly at higher components. The leading four explain more than
80% of the variance and Table 3 gives the percent variance explained by the leading
three. Two things are evident from Fig. 5. First, the simulations all follow a similar
time evolution which clearly reflects the pattern of the ENSO activity for the decade.
This is clear from comparing Fig. 5 to Fig.6 which 1is a plot of the Southern Oscillation
Index (SOI) from the Climate Analysis Center. This index is the difference in atmo-
spheric pressure between Darwin, Australia and Tahiti. It is tightly linked to the cy-
cle of the equatorial Pacific SST and the atmospheric response to the SST. The two
distinct dips in 1982/83 and 1986/87 répresent two strong ENSO events, the 82/83
event being the strongest on record. Figure 5b makes use of the same data as Fig. 5a
except that it shows the differences in each simulation from the mean of all the sim-
ulations at each time point. These difference curves are in a sense a measure of the
non-deterministic component of the flow. The mean time series has an ENSO signal
that clearly rises above the noise level during the larger excursions of the SOI. During
the interim periods one cannot distinguish the influence of the SST variations from



the model’s intrinsic noise.

Figure 7 is a geographical plot of the divergence pattern of the leading CPV. It
should be noted that most of the amplitude of the signal is over the Tropical Pacifie
and the pattern is broadly consistent with that expected from observed precipitation
anomalies associated with ENSO events. There is enhanced u pper level divergence in
the eastern equatorial Pacific. The CPC data compression retains sufficient informa-
tion to be able to make some physical interpretation of the modes identified.

The point to be made here is not the discovery of new relationships but a mea-
sure of the impact of the S5Ts on the simulations with varying initial conditions. The
ECMWF model appears to have a robust, reasonable simulation of the ENSO re-
sponse for the global 200hPa divergence.

Ensemble integrations are now commonplace among the major weather fore-
casting centers, Toth and Kalnay (1993). The CPC methodology provides a framework
for combining ensembles into a single field. This combining is necessary since the
number of members of the ensemble is often greater than twenty. This would provide
more information than can be easily assimilated by a forecaster and the CPC tech-
nique provides a consensus summary which is usually the type of information need-
ed. There are some indications that the SST are predictable a month or a season in
advance, and if the atmospheric models are then driven by these S5Ts, a climate pre-
dietion can be made. A CPC analysis of an ensemble of such atmospheric predictions
would be an efficient way of producing a robust climate forecast,

Figure 8 is the same as Fig. 5b, except for CPC 2. In these curves there is also an
influence of the ENSO variations. The mean curve is less above the “noise” level than
in Fig. 5b. By the third CPC (not shown) the mean curve is almost completely en-
gulfed by the ensemble variations, which restricts the number of conclusions that can
be drawn using a single run or even five runs from this perspective.Figure 5 indicates
that beyond the ENSO maxima the model and the observations do not have a great
deal in common for this mode. Each has a different response given a common SST
forcing for the decade. This is not unexpected since on the global scale a great many
more variables influence the interannual variability of the upper level divergence
field besides the equatorial Pacific SSTs.

In the foregoing we have presented some aspects of the relationships of the mem-
bers of the ensemble to each other. A logical next step is to ascertain what relation the
five ensemble members have to the observed data. An easy path is to just include the



observations as another data set with the five ensembles in performing the CPC anal-
¥sis. The percent variance explained by the leading three PCs for this analysis which
now is over six data sets (five ensemble members + NCEP reanalysis) is shown in Fig.
9. Figure 10 is the time series for the leading two CPCs for this analysis with the
NCEP reanalyses shown in the solid line. Figure 10a shows that the leading mode is
associated with the ENSO variations. Comparing Figs. 10a and10 b indicates that the
model does a fair job in tracking the ENSO variations for the period, however, beyond
the first CPC the correspondence almost vanishes. In Fig 10a the ensembles show an
agreement with each other and the observations, while in Fig. 10b the ensembles
agree with each other but are at odds with observations. The percent variance ex-
plained (Fig. 9) indicates that the leading vector is more dominant in the ohserva-
tions. It is clear that this mode in the observations lies outside those of the members
of the ensemble. A single run would be adequate to capture this aspect of the ECMWF
AMIP integration.

To formalize this conclusion, a non-parametric randomization test (Noreen,
1389), has been performed for the percent variance explained by the CPCs to test the
hypothesis that the observations could come from the population indicated by the
model simulation. The randomization test was applied on the percentage of variance
explained by each of the first three common principal components as follows,

For each of the three CPCs two sets of differences of explained percentages of
variance are computed. The first set consists of the five differences in abzolute value
obtained by subtracting the observed PVE from those of the five simulations. The sec-
ond set consists of the ten absolute differences in PVE derived from the ten possible
pairs selected from within the group of the five CPCs of the five simulations. Thus the
two sets of differences represent respectively the model/observation difference and
the within-model differences for each CPV. Table 4 summarizes the procedure and
findings. The randomization test permutes the combined set of 15 differences in all
possible manners computing the simulated distribution of the difference of the mean
of the first 5 with that of the rest. It then estimates the probability of the differences
being as high as or higher than the actual difference. Let ¢ denote the fraction of time
that under random permutation of the fifteen, the mean of the first five exceeds the
mean of the remaining ten by more than the actual value. The estimated values of &
in the three CPCs were 0.002, 0.0, and 0.749 respectively. From a sampling distribu-
tion of the estimated ¢ the probabilities are computed leading to the significance lev-
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els in Table 5. The values in Table 5 indicate that ¢ is almost certainly less than 0.01
for the first two CPCs and almost certainly greater than 0.1 for the third,

Model development and evolution

Divergence error fields

In the work presented next, the difference fields computed by subtracting the
200 hPa divergence of the NCEP/NCAR reanalysis from the AMIP models are com-
pared. In this case the common behavior would reflect some common error in the mod-
els. In these data the seasonal cycle was retained, and the covariance matrices were
formed from the deviations from the 120 month mean,

The most brute foree approach is to take all the 30 models for which we had data,
and to caleulate the CPCs for the difference fields between the models and the reanal-
ysis. The results for this analysis are not shown since they did not reveal much. The
leading three common vectors, which were shared by all the models, closely resembled
the PC analysis of the NCEF/NCAR reanalysis. This could be interpreted as meaning
that the models are all in error, and that what they share most in common is a dift
ference with the reanalysis with no particular common pattern. Guing into the anal-
ysis, it was hoped that the common error patterns might indicate specific regions or
times when the models had particular problems in simulating the upper level diver-
gence. It might be thought that there would emerge specific locations where the con-
vective parameterizations would evince a common breakdown, especially in the
Tropics. However, for these data there is not a common localized systematic error as
was evident in the US precipitation data. The models’ common feature is that they
are different from this observational data set, but evidently they are different in a
host of ways.

The CPC analysis was then applied to a selected subset of four models, which a
priori were expected to have some commen type of error patterns. The models chosen
for this analysis were the ECMWF, UGAMP and MPI (ECHAM-3) AMIP models and
the MPI (ECHAM-4) model run using the AMIP boundary conditions. These models
were chosen since they all share the same basie formulation of the ECMWF model.
Indeed, they all started from the same code. The UGAMP differs from the ECMWF
only in the penetrative convective scheme used. UGAMP uses the Betts-Miller con-
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vective adjustment while the ECMWF uses the Tiedtke mass flux scheme, as do the
MPI models. Although sharing the same convective Parameterization, the MPI and
ECMWF models differ in many ways as documented by Phillips (1994). The chief dif-
ferences are the treatment of the land surface processes and the radiation, particu-
larly the interaction with clouds. Figure 11 presents the percent variance explained
for the leading three vectors. It is evident that the ECMWF and UGAMP models and
the two MPI models form two pairs. It might be felt that for this field, upper level di-
vergence, the convective parameterization might play an overwhelming role in deter-
mining the model characteristics. However, in this case the models sharing the same
convective scheme are different, while the two models alike except for this parame-
terization are similar. Figure 12 are the time series of the two leading CPCs for this
group of models.

The MPI changes were intended to improve the performance of the ECMWF fore-
cast model in climate simulations. The MPI models show a clear reduction in ampli-
tude of the leading CPC, which is dominated by the seasonal cycle. The two MPI
simulations appear to differ mostly in amplitude, except during the ENSO events of
82/83 and 86/87 when they also get out of phase. Table 6 provides the mean absolute
values of the time series, which in the case are actually errors with respect to the
NCEP/NCAR reanalysis. There is actually a slight increase in the difference for the
second vector for the MPI models with respect to the other two. Figure 13 shows two
leading CPVs. There is considerable amplitude in the Tropics, which might be expect-
ed but also there is significant contribution in the midlatitudes. The maximum cen-
tered just west of Central America is a characteristic error for this suite of models.
The variations of the monsoon over eastern Asia are evident in the figure.

The ensemble of five ECMWF integrations were analyzed for the velodity poten-

tial difference field in order to be able to judge if the variations between the single
runs of the four models lie outside what might be expected from the intrinsic variabil-
ity. It would be better to run such an ensemble analysis on each model, but the ECM-
WF model is most probably a fair proxy since they all share the ECMWF dynamical
core and many parameterizations. The results are shown in Figs. 14 and 15. What is
interesting is that the UGAMP and ECMWF models are actually indistinguishable
given the variability represented by the ensemble by the tests outlined above. It
would appear that it would take a larger number of integrations to establish if the
UGAMP and ECMWF are truly unique from this particular perspective.
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4. Discussion and conclusions

CPCs have been shown to be useful in the comparison of the output of a large
number of GCMs. This type of analysis attempts to characterize the systematic model
errors, as here is value in ascertaining the systematic errors that cut across all the
models. Presumably, such errors would indicate a fundamental gap in understanding
or a defect in parameterization implementation that might be corrected if identified.
CPCs have also demonstrated utility in as a natural way to summarize the robust re-
sults of an ensemble of simulations from a single model. In the future, this technique
will be applied to time series of longer simulations. One idea is to compare the com-
mon components between decades of a multidecadal coupled climate system model.

It is important to indicate what the CPCs are not. The technique is not a replace-
ment for describing the coupled patterns of, say SST and 500 mb geopotential. The
analysis of coupled patterns is well described by Bretherton et al. (1992) using SVD,
CCA, CAA, PC. Nor is the CPC a replacement for the simple PC. The CPC are a com-
promise among the covariance matrices provided to the algorithm and do not preserve
the powerful concise description inherent in PCs. The CPC does not permit the rota-
tion of individual members of the group being analyzed. In this work the CPC analy-
ses has been used to complement the PC information.

For the purpose of comparing two fields the technique of projecting the model
filed onto the observational PC, as described by Priesendorfer (1988), provides in-
formation that the CPC cannot. However, there are fields for which the observational
quality is dubious. In any case the CPC provides a kind of consensus viewpoint of cor-
responding components which has been shown to be useful. The CPC technique is
well worth adding to the tools of data analysis. The concise description of ensemble
data probably holds the greatest promise for general modeling beyond the AMIP type
intercomparisons.

A formalism for the space-time comparison of geophysical data can be built by
first identifying the commonality in the spatial structure by means of a CPC analysis,
followed by a comparison of the corresponding CPCs as time series. One way of com-
paring two (or more) time series resulting as the common principal components is to
check how well the identification of parameters in one can be used to predict the oth-
er. This notion of predictability of one series in terms of the other can be extended one
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more step by regarding the two series in a bivariate context. More precisely, one may
consider one series as a (linear)filtered version of another and estimate in an 'optimal’
way the filter coefficients (Newton 1988). One may expect to do a little better if one
allows for nonlinearity in the filter.

One can also look at two time series of a specified CPC pair resulting from two
model outputs (or a model output and observations) and find a predictive function of
one in terms of the other. This or other measures of predictive skill can then be used
to validate the similarity of the two models (or the model and the observations). The
process can of course be repeated for the comparison of all leading CPCs. In the con-
text of model intercomparison, two data sets (model/model or model/observation)
would be considered as 'similar' with increasing degree of similarity in the order in-
dicated below, if :

(i) The significant common principal compenents within each pair under comparison
explain a 'large' portion of the variations in the fields under comparison and

(ii) a high degree of predictive skill is demonstrated when one of the series is used in
the prediction of another.
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PC4
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Table 1: Percent variance explained for principal components of observed precipitation

PC1 PC2 PC3 PC4
38 14 4 4
Table 2: Pércent variance explained fof principal compohents of
the UCLA model
Modelrun | CPC1 | cCPC2 CPC 3
1 37 31 - 7
2 39 28 9
3 41 25 i 9
4 38 28 7
5 43 24 8

Table 3: Percent variance explained for common principal com

potential of ECMWF AMIP model
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precipitation simulated by

ponents of 200 hPa velocity



within difference .
Model/obs model of means estimated ¢
CPC-1 8,6,4,7,4 2,4,1,4,2, | 3.6 0.002
1,2,0,3,3 )
CPC-2 11,9,5,8,7(2,6,3,4,4, | 52 0.0
1,2,3,2,1
CPC-3 2,0,0,2,1 (2,2,0,1,0, |{-0.2 0.749
2,1,2,1,1
Table 4: Model / observation and within-model absolute difference in PVE for the leading
three CPCs
P(¢$<0.01) | P(¢<0.05) P(¢<0.1)
CpPC-1 1.0 1.0 1.0
CPC-2 |10 1.0 1.0
CPC-3 |00 0.0 0.0

Model CPC 1 CPC2
ECMWF |27 1.8
UGAMP | 34 1.9
MPI 2.2 2.1
MPI- 2 2.2 2.3

respect to the reanalysis data
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Table 5: Probabilities associated with levels of significance of the randomization tests

Table 6: Mean absolute error of the CPCs for the four models shown. The error is with

e



Figure 1. (a) The leading principal vector of the observed precipitation data set deviations from the 120
onth mean, This mode explains 25% of the variance. Contour interval iz 0.01. Dashed lines indicate
negative values, Solid lines indicate zero and positive values.

{b) As in (a) except for the second principal vector. This explains 14% of the varianes.
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Figure 2. The leading three prmcxpal components of the observed precxpltatlon data set deviations from
the 120 month mean. .
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Variance explained (%)
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Eigttm_ﬂ. Fercent variance explained for a common principal compenent analysis for the observed pre-
cipitation and AMIP model precipitation data set deviations from the 120 month mean. The eompe-
nents are ordered in the sequence of the observed data.
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Figure 5. (a) The leading common princi
AMIP ensemble of simulations for the 2

) Th

‘The same data as in (b) except the mean (thick solid line) of
m this mean.

the deviations of each simulation fro

00 hPa interannual vari

YEARS

pal component for each of the five members of the ECMWF
ations of the velocity potential.
the five members is shown along with
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Figure 6. The Southern Oscillation Index (SOI) from the Climate Prediction Center for 1979 to 1988.
This index is the difference in sea level pressure measured at Darwin, Australia and Tahiti. The fil-

tered curve is produced using an 8 point Gaussian smoothing.
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Figure. 7. The leading common principal vector of the five ECMWF AMIP ensembles for the 200 hPa
JAnterannual variations of velocity potential. Contour mterval is' 0 01. The dashed lines mdlcate nega-
tive values. The solid lines are positive and zero.
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Figure 8. (2) As in 5b except for the séédnd cgmpomnt * ‘ R
(b) As in 5b except for the third component. Note the scale change on the otdmat& o
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Figure 9. Percent variance explained for the leading three common principal components of the ob-
served (NCEP reanalysis) and five ECMWF AMIP simulations for the 200 hPa velocity potential.
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Figure 10, (a) The leading common principal component of the analysis with the NCEP reanalysis and
the five members of the ECMWF AMIP ensemble of simulations for the 200 hPa interannual variations
of the velocity potential. The thick solid line is the reanalysis data.

(b) As in (a) except for the second component.
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Figure 11. Percent variance explained for a common principal component analysis for the difference i
the global 200 hPa velocity potential of four AMIP models and the NCEP/NCAR reanalyses. The com-
ponents are ordered in the sequence of the ECMWF model.
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Figure 12. (a) The leading common principal component for each of the four models for the difference

in the global 200 hPa velocity potential of each model from the NCEP/NCAR reanalyses.

(b) As in (a) except for the second CPC component.
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Figure 13 (a)The leading common prineipal vector of the four medels for the difference in the global
200 hPa velocity potential of each model from the NCEF/NCAR reanalyses 200 hPa interannual vari-
ations of velocity potential. Contour interval is 0.01. The dashed lines indicate negative values, The
solid lines are positive and zero.

ib) As in (a) except for the second CPC vector.
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Figure 14. Percent variance explained for a common principal component analysis for the difference i
the global 200 hPa velocity potential of the five ECMWTF ensemble members and the NCEP/NCAR re-
analyses.
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Figure 15 (a) The leading common principal component for each of the five ECMWF ensemble members

for the difference in the global 200 hPa velocity potential of each model from the NCEP/NCAR reanal-
yses. ’ ' ‘

(b) As in (a) except for the second CPC component.
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