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Abstract

In traditional principal component analysis (PCA) a few significant linear combinations of the
original variables are extracted to arrive at a parsimonious description of a complex. data set
obtained from climate observations, analysis or from GCM ouputs. These are uncorrelated
variables which are used in practice to understand the principal modes of variation in the
climatological process under study. If we drop the requirement of linearity and uncorrelatedness, a
greater data reduction is possible allowing us to deal with fewer modes of variation. These
nonlinear functions can in fact be obtained by using a series of auto-associative feed-forward
neural networks in which the residuals from the previous network are fed as the contents of the
input output pair for the next. It can be shown that in special cases such networks provide ordinary
principal components.

We have explored this methodology to gain a better understanding of the precipitation data over
the US observed over land and bordering oceans for the 1979 to 1988 decade. A careful
comparison with the linear counterpart has been made. The improvement in the data reduction is
noticeable but not overwhelming. Certain details in the modes of variation are more pronounced in
the nonlinear representation. The leading nonlinear mode captures the seasonal cycles more
clearly than the leading linear mode. In the latter, the seasonal cycle is shared by subsequent
modes of the PCA. The principal linear and nonlinear modes of the observational data has been
intercompared with the corresponding modes of the data obtained from a GCM simulation.

We conclude by observing that nonlinear principal component analysis(NLPCA) based on auto-
associative neural networks is potentially a more effective data reduction tool than conventional
PCA. Also the principal modes of variation of the precipitation data of the continental US are
better differentiated by a NLPCA than by ordinary PCA. It should be tried as an alternative
method especially when linear PCA fails to show meaningful patterns in climatological data
analysis.

1. Introduction

A Principal Component Analysis (PCA) is concerned with the understanding of the covariance
structure through a few ’significant’ linear combinations of the original variables, the motivations
being twofold. Firstly, it enables us to compress data when significant correlation is present among
the variables. Secondly, it allows us to attempt understanding the physical meaning of the data.
While in the engineering sciences the primary motivation is the first one, in the geophysical
sciences it is particularly important to discern any physical information content that may be present
in the extracted principal components (Preisendorfer, 1988). In the work reported here we focus on
the meaningful summarization of the large amounts of data output from GCM( General Circulation
Model) simulations of the atmosphere and the concomitant observational data.

Given a space-time data set {X(s,t), s=1,2,..., m; t=1,2,...,n) with m spatial locations (typically these
are grid locations in GCMS) and n time instants of observations, the spatio-temporal behavior of
the physical field X can be decomposed into an uncorrelated set of m time series or n spatial fields
depending on the mode of the PCA. If the requirement of uncorrelatedness is dropped and
nonlinear functions of the original variables are allowed there is a significant gain in terms of data



compression. Furthermore, the lack of uncorrelatedness per se may not necessarily preclude the
understanding of the physical meanings of the fields or time series derived using a nonlinear mode
of analysis. In fact, by using an auto-associative neural network with nonlinear processing
elements, a task equivalent to the extraction of principal components can be carried out. Such a task
has been termed ’nonlinear principal component analysis’ (Kramer, 1991) with the corresponding
components termed as nonlinear principal components (NLPC).

This paper deals specifically with two geophysical data sets. These are the precipitation values over
the North American continent during the decade 1979 1988 obtained from observations and
simulated by an atmospheric GCM. In choosing this data set, we anticipated that an NLPC analysis
applied to this data set may provide additional insight into the physical process which proved to be
true only marginally. The neural network techniques used in this paper are described in the next
section. It also contains a short account of how the extraction of ordinary (linear)principal
components by multi-layer perceptrons (Bourlard and Karnp, 1987) is done by an auto-associative
feed-forward neural network.  The final section presents the data description, some results, and
conclusions.

2. Artificial neural network

Principal component analysis (PCA) is a technique essential in data compression, feature
extraction, compact coding and increasing computational efficiency. In the context of data analysis
in climatology, the constraints and interdependency of spatio-temporal data can be identified and
redundancy eliminated by the use of PCA. For example, the use of PCA is commonplace in
climatological literature (Preisendorfer, 1988) in the efficient summarization of massive amounts of
data. Briefly speaking, if x is a centered n-dimensional vector, PCA extracts p (p<n) linear
combinations appearing as elements in the product W x of the components of x where W is a (p x
n) matrix of weights subject to the constraints that (a) the variance of each linear combination
appearing as elements of W N is maximized and (b) the extracted linear combinations are mutually
orthogonal. In practice, the eigensystem for the sample covariance matrix is solved with the
resulting p dominant eigenvectors representing the principal vectors. Several workers in the neural
network community (Bourlard and Kamp, 1987; Baldi and Hornik, 1989; Sirat, 1991; Oja, 1992)
have related multilayer pereeptron learning by back propagation algorithm with principal
components extraction in classical statistics. An account of principal components by auto-
associative linear networks as proposed by Baldi and Hornik (1989) is presented in an appendix. In
their formulation, the network consists of a single hidden layer with linear processing elements
(executing the identity function) with as many nodes as the desired number of PCs. The training
input-output pairs consist of the same target output as input (hence the name auto-associative). It
turns out that the activities at the hidden layer nodes are in some sense equivalent to the p ordinary
principal components obtainable by a singular value decomposition of the covariance. Thus the
hidden layer provides a compact representation of the data. Because of this property it has been
termed the ’representation layer’ in neural network literature. Becker (1991) provides a
comprehensive survey relating PCA models to unsupervised learning neural networks. In
suggesting a transition from linear to ’nonlinear’ principal components (NLPC), Demers and
Cottrell (1992) argue that PCA finds an optimal linear subspace on which one projects the data
with minimum loss of information (in the sense of maximizing the ’explained’ variance in the data).
However, if the data lie on a nonlinear submanifold of the feature space, then the number of



dominant PCs will overestimate the dimensionality. The covariance matrix of sampled points on a
nonplanar 3-d curve has a full rank and a PCA will generate three distinct eigenvectors. The same
for a nonlinear planar curve will generate two and for a straight line only one. Yet all three are
intrinsically one-dimensional.

In order to capture this intrinsic dimension, representations using neural networks have been
proposed by several authors (Kramer, 1991; Oia, 1991; Usui, Nakauchi and Nakano, 1991 and
Demers and Cottrell, 1992). The addition of hidden layers between the inputs and the
representation layer as well as between the representation and the output layer provide a network
which is capable of learning nonlinear representation. In the process, one achieves what may be
termed a nonlinear analogue of PCA. In the following we present the sketch of such a network, Fig.
2. The network consists of five layers which are fully interconnected. In addition to the input and
output layers which are identical since the network is made to be auto-associative, we have a
central representation layer (where the principal manifolds or NLPCs are generated as the
activities) and two identical layers placed on the two sides of the representation layer. These last
two layers as described above, are called the encoding and decoding layer respectively. They are
essential in this architecture since the mere addition of a nonlinear (sigmoid) activation function in
the representation layer without these layers appears, at most, to be capable of producing a
monotone function of the ordinary principal components. We have used the ’back propagation of
error’ as the training algorithm(Rumelhart and McClelland, 1986).

Network architecture

Although there are no specific guidelines for the choice of the number of nodes in the encoding and
the decoding layer, Kramer (1991) provides bounds based on the principle that the number of
weights in the network should be a fraction of the number of constraints imposed by the data set. A
few simplifying assumptions then lead to the constraints

MI + M2<<n, Ml>f and M2>f  (1)

where MI, M2 are   respectively the sizes of the encoding and the decoding layers, f is the number
of nodes in the representation layer and n is the size of the training set.

In determining the size f of the representation layer, Kramer (1991) introduces a sequential
determination of the NLPCs one at a time similar in spirit to its linear 5 counterpart, namely the
PCA extraction algorithm. Applied in this context, it amounts to using in a recursive manner the
same network in fig. 2 except with a single node in the representation layer. In addition, each
recursion feeds the residual matrix obtained from the previous stage as the elements in the training
1/0 pair. The residual matrix is simply the error matrix obtained by subtracting the output of the
trained network from the input. The procedure stops when either a desired number of NLPCs have
been extracted or a desired level of accuracy has been attained in the residual matrix.  More simply,
instead of a sequential procedure, we may simply decide to use a fixed number p say, of nodes in
the representation layer and extract the p NLPCS. This will however preclude any ranking of these
NLPCS.



Extraction of nonlinear principal modes and components

The activities ( output) at the nodes of the representation layer are the NLPCS. This is the analog of
the linear case where the actual PCs are generated in the hidden layer of the neural network (see
appendix). The principal vectors (modes) no longer have a direct analog in the nonlinear case. We
can, however, take a weighted average of the data fields, the weights being the elements of the time
series representing a specific nonlinear principal component defined previously. These will be
referred to as the nonlinear principal modes (NLPM).

3. Data

The basic data used in this study are monthly averaged precipitation values over the United States
for the decade 1979 to 1988 from two sources, observations and the output from a GCM
simulation. The precipitation observations were gridded to a 4 degree by 5 degree latitude,
longitude lattice. The observations are from surface stations over land (Schemrn et al. 1992) and
satellite MSU estimates (Spencer, 1993) over the oceans. The bulk of the analysis grid used here is
over the United States where the observational network provides reliable precipitation fields. The
data are monthly averages for the 120 months from January 1979 to December 1988.

The model generated data was produced by the AMIP simulation of the National Center for
Atmospheric Research (NCAR) Community Climate Model (CCM). The version used here is
described by Hack et al. (1993) and is referred to as the CCM2. The model has a spectral
formulation and the simulation was run at a resolution of T42. The precipitation monthly means
from the model were interpolated to the same 4 x 5 degree grid as the observations.

The sets for input into the PC and neural network were computed by subtracting the 120 month
mean from each gridpoint to form deviations. In these data the seasonal cycle is retained. It is of
interest to ascertain the relationship of the PCs and NLPCs to the strong seasonal variations. The
neural net architecture used was that of Fig. 2 and 3 with 10 nodes in the encoding (MI) and
decoding(M2) layers and I node in the representation layer(f). Since there are 120 points in the
training set the inequalities in (1) are satisfied.

The PC analysis used the standard routine PRINC from IMSL (1994) to compute the principal
components from a covariance matrix computed from the 120 time samples at 95 spatial gridpoints.
Since there is no exact correspondence between the PCs and NLPCs beyond the first of each,
comparison of the subsequent components is not obvious. The results will focus on the first
components of each method since these will be shown to represent the seasonal cycle and allow a
fairly direct and unambiguous interpretation.

4.0 Results

Figure 4 shows the leading nonlinear and linear modes for the observations of precipitation over the
US. The spatial distribution allows for some physical insight into the components. The time series,
Fig. 5, of the linear and nonlinear PCs are quite similar overall. Even the succeeding PCs and
NLPCs are qualitatively quite similar(not shown). From the time series in Figs. 5, it can be seen
that these first components are dominated by the seasonal cycle. The observed variations across the



continent present a real challenge for the GCM simulations. A discussion of the ability of the AMIP
GCMs to portray this field will be the subject of a forthcoming report, Boyle and Sengupta (1995).
Figure 4 shows a pattern consistent with the central US being out of phase with the two coasts. This
type of variation has been documented by Hsu and Wallace (1976), Horn and Bryson(1960) and
others. The west and east coast have a wintertime maxima in precipitation attributable to cyclonic
storms, while the mid-continent has a summertime maximum which is produced by convective
events. The leading PC accounts for 25% of the variance.

The principal modes (linear and nonlinear) in Fig. 4 are very much alike although there are some
differences in detail. The NLPM has a larger variation for the 7 far western region and reduced
extrema in the Central and Eastern regions compared to the PV. In the NLPM data the maximum
off the east coast shifted northeastward, and the minimum in the central US shifted northward with
respect to its linear counterpart. The NLPM makes a sharper distinction between the maxima on the
Gulf Coast and off the Eastern US. The NLPM has negative values over Florida and to the east.

An RMS and mean absolute difference value was computed for the difference between the input
data and the first neural network output for all the 120 months over the grid. Similar values were
computed in the linear case using the first principal component approximation. The NLPC RMS
and mean absolute difference was 10% less than that of the PC. This indicates that overall the two
methods have a similar ability to fit the data, with the NLPC being the slightly better fit. In the time
series the PC and NLPC techniques (Fig. 5) evince the dominance of the seasonal oscillation as
might be expected from the close match of the plots in Fig. 4, the times series of the first PC and
NLPC both exhibit similar temporal behavior.

Although the time series in Fig. 5 are similar, the NLPC tends to have a sharper transition from the
winter to summer season. Figure 6 displays the results of a maximum entropy spectral estimation
performed on the time series of Fig. 5. The figures show that the NLPCs have the bulk of the power
in the first component while the PCs have a sizeable contribution from the second PC in the
seasonal frequency. In this sense the NLPC does a much better job in isolating the seasonal cycle in
the primary component. Figure 7 is a plot of the mean winter (DJF) data minus the mean summer
(JJA) data for the raw observed data set. Figure 7 more closely resembles the data in Fig. 4a, the
NLPC, than Fig. 4b, the PC. The ability to be able to isolate the primary seasonal forcing might
prove to be quite useful as the GCMs improve and come under closer scrutiny. As the next section
will indicate the current simulations are probably not accurate enough to justify this level of
analysis.

5.0 CCM2 simulation

Figure 8 displays the leading NLPM and PV for the precipitation data from the CCM2 AMIP
simulation. As in the case with observations, the two patterns are quite similar. The region of
positive values centered on Arkansas in the NLPM is much reduced in the PV. The zero line east of
the Carolinas is moved farther westward in the NLPM compared to the PV field. The RMS
computation reveals that the NLPC has a 11% closer fit to the input data than the PC. Although the
overall fit to the data are similar, the times series in Fig. 9 indicates that the NLPM and PV are
fitting the in- dividual months differently as was the case in the observed analysis. However, as can
be seen by the two time series, the model tends to have a great deal more regularity in the seasonal



cycle than did the observations. This results in the patterns in Fig. 8 appearing to be quite
similar, the main differences being in the magnitudes of the ex- trema rather than their
positions.

The leading NLPC time series exhibits an extreme regularity for the seasonal cycle.
There is an obvious summer and winter regime with sharp transition. The PC data, Fig.
6a, also shows a regularity but it does not plateau about the solstitial seasons like the
NLPC. The leading NLPC has isolated the bulk of the seasonal cycle and the remaining
modes are involved in describing the interannual variations. In this case the NLPC
highlights the regular nature of the CCM2 simulation when compared to the observed
variations for the decade. The most obvious interruption of the quite regular pattern in
Fig. 9a occurs in the winter of 1982/83. This is the winter in which the strongest El Nino
- Southern Oscillation ( ENSO) event on record occurred. The nonlinear analysis quite
graphically isolates the impact of this event on the precipitation pattern over the US.

Comparing the results of the model in Fig. 8 to the observations in Fig. 4 indicates that
the model is very much different from the observations. The difference is great enough
that the gain achieved by the NLPC analysis is not really of practical value since even a
cursory examination of the linear components is sufficient to show the model problems.
However, as the models gain in sophistication and accuracy there will be a need for
analysis that captures the more subtle aspects of the phenom- ena that are modeled.

6.0 Conclusions

The results indicate that the nonlinear mode of analysis for the data reported here offers
only a small gain in terms of overall reduction of the data with respect to its conventional
linear counterpart. While this is perhaps disappointing, it does indicate that the well
known and commonly available linear techniques are providing a viable description of
these types of data. The NLPC does fit the data with greater fidelity but at the cost of
significantly greater computational complexity. The additional complexity has not yet
been shown to yield sufficient benefit to make its regular use worthwhile. A comparison
of the leading PV or NLPM of the observations in Fig. 4 and the CCM2 simulation in
Fig. 8 shows that for this model the analysis need not be concerned with close fits to
demonstrate the model deficiencies. The model is gross- ly in error along the Eastern US
for even such basic variations as can be attributed to the seasonal cycle. Nonetheless, the
NLPC does show some promise. Comparing Figs. 4 and 6, the time series of the NLPC
dramatically indicate the substantial differences in the nature of the variation of the
model and observations. As the models improve, the abilities of the NLPC to discern
differences might become more valuable. Acknowledgments. The generosity of the
modeling groups involved in AMIP in making their results available is greatly
appreciated. This work was performed under the auspices of the Department of Energy
Environmental Sciences Division by the Lawrence Livermore National Laboratory under
contract W-7405-ENG-48.
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