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Objective:To inform assessments of climate change cloud feedbacks by improving
evaluation of clouds simulated by climate models and understanding of cloud-

climate feedback processes.



CFMIP-2/CMIP5 Experiment Hierarchy
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CFMIP-2 Data available on the Earth System Grid

Number of models with each type of data available for each experiment:

Met Office
Monthly [Monthly [Monthly |Daily [Daily Timestep| COSP Gridded |3 Hourly
Amon [cfMon [ISCCP/ |CFMIP |ISCCP/ |cfSites |Orbital Orbital COSP
CALIPSO CALIPSO |Outputs |[CloudSat/|CloudSat/|Inputs
CALIPSO|CALIPSO
amip 30 12 11 12 12 7 5 4 4
amip4K 13 12 12 10 10 6 5 4
amip4xCQO2 13 12 12 11 11 5 5 4
amipFuture 12 10 10 9 10 5 3 4
aquaControl 10 7 8 6 8 4 1
aqua4xCO2 9 7 7 8 7 4 1
aquadk 9 4 7 8 7 4 1
piControl 45 6 9 10 9
1pctCO2 34 4 8 9 8
abrupt4xCQO2 31 4 8 9 8

Please see hitp://www.cfmip.net -> Data Availability
Please also check the data errata page:
http://cmip-pcmdi.linl.gov/cmip5/errata/cmipSerrata.html
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CFMIP Observation Simulator Package (COSP)
Bodas-Salcedo et al, 2011 (BAMS)
Met Office Nittp://www.cfmip.net -> COSP
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COSP is being used by all of the major modelling groups in CMIPS5.
Funding: IS-INES, NASA ROSES

Stable release COSP 1.4 for CMIP6 available since Nov 2013

Future developments (See Alejandro Bodas-Salcedo’ s talk on Thursday)
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Recent model evaluation studies using COSP:

Zhang et al 2015: Simulations of Stratus Clouds over Eastern China in CAMS
(J. Climate)

Mason et al 2015: A hybrid cloud regime methodology used to evaluate
Southern Ocean cloud and shortwave radiation errors in ACCESS (J Climate)

English et al 2015: Arctic Radiative Fluxes: Present-day biases and future
projections in CMIP5 (J Climate)

Ban-Weiss et al 2014: Evaluating clouds, aerosols, and their interactions in
three global climate models using satellite simulators and observations, (JGR)

English et al 2014: Contributions of clouds, surface albedos, and mixed-phase
ice nucleation schemes to Arctic radiation biases in CAMS5 (J Climate)

Wang et al 2014: Evaluation of cloud vertical structure simulated by recent
BCC AGCM versions through comparison with CALIPSO-GOCCP data
(Advances in Atmospheric Sciences)

Ma et al 2014: On the correspondence between mean forecast errors and
climate errors in CMIPS. (J. Climate)

Please see htip://www.cfmip.net for full publication list




COSP is increasingly being used as part of the model
development process:
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Figure 4. Cloud Altitude-Reflectivity Histogram for the Californian Stratocumulus and Hawaiian Trade Cumulus Cloud Regimes for JJA 2007.

Nam et al 2014 Evaluation of boundary layer cloud parameterizations
in the ECHAMS general circulation model using CALIPSO and
CloudSat satellite data (JAMES)
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CFMIP
Observations for
model evaluation
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CFMIP-OBS

http://climserv.ipsl.polytechnique.fr/cfmip-obs

Satellites Observations

CALIPSO/ CLOUDSAT/
CERES /PARASOL /MODIS

CLUMATE RESEARCH FACILITY PAR TELEDETECTION ATMOSPHERIQUE

— —— 1 SE INSTRUMENTAL DE RECHERCHE

Climate Models

-Ongoing work to convert data into CMOR compliant

NetCDF for ESGF via OBS4MIPS

-Preparation for future EarthCare Lidar/Radar Products with

support from ESA

(Helene Chepfer, Gregory Cesana, Robert Pincus, Yuying

Zhang, Roj Marchand)



Recent studies using COSP to examine and quantify cloud
feedbacks / adjustments

Tsushima at al (submitted) Robustness, uncertainties, and emergent
constraints in the radiative responses of stratocumulus cloud regimes to
future warming (Climate Dynamics)

Chepfer et al 2014: Where and when would a space born lidar observe
cloud changes due to climate warming? (GRL)

Andrews and Ringer 2014: Cloud Feedbacks, Rapid Adjustments, and the

Forcing—Response Relationship in a Transient CO2 Reversibility Scenario
(J Climate)

Zelinka et al 2014: Quantifying Components of Aerosol Cloud Radiation
Interactions in Climate (J. Climate)

Tsushima et al 2014: High cloud increase in a perturbed SST experiment

with a global nonhydrostatic model including explicit convective processes.
(JAMES)

Please see http://www.cfmip.net for full publication list
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Using COSP to examine and quantify cloud feedbacks/adjustments

a) AGlobal cloud, avg = -0.7% b) ALand cloud, avg = -2.2% ¢) AOcean cloud, avg = -0.1%
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Bretherton et al 2014: Cloud feedbacks on greenhouse warming in the
super-parameterized climate model SP-CCSM4 (JAMES)



Understanding forcings and feedbacks using idealised
CFMIPS/CFMIP-2 experiments / process diagnostics
(AMIP, aqua, abrupt4xCO2)

Brient et al submitted: Shallowness of tropical low clouds as a predictor of
climate models’ response warming (Climate Dynamics)

Ceppi et al submitted: Mechanisms of the negative shortwave cloud
feedback in mid to high latitudes (J Climate)

Webb et al 2015: The diurnal cycle of marine cloud feedback in climate
models (Climate Dynamics)

Qu et al 2014: The strength of the tropical inversion and its response to
climate change in 18 CMIP5 models (J Climate)

Kay et al 2014: Processes controlling Southern Ocean shortwave climate
feedbacks in CESM (GRL)

Ogura at al 2014: Importance of instantaneous radiative forcing to
tropospheric adjustment (Climate Dynamics)

© Crown copyright Met Office



CFMIP atmosphere-only experiments capture cloud feedbacks in AOGCMs
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Ringer et al 2014: Global-mean radiative feedbacks and forcing in atmosphere-
only and coupled ocean-atmosphere climate change experiments (GRL)



Aquaplanets capture many AMIP/coupled model responses of clouds,
circulation and precipitation to warming and CO, quadrupling

SENSITIVITY PARAMETER [K W'm?]

Fig. 3 Sensitivity versus cloud effect parameter for SST+4K
warming experiments. Triangles show the AMIP experiments, circles
show the aquaplanets. Solid symbols are the tropical values, while
unfilled symbols are the global values. Color varies by model
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Fig. 5 Hadley circulation width (rop) and strength (bottom) for each
model and the multi-model mean (far right). Triangles denote the
AMIP simulations (upward and downward pointing for northern and
southern hemisphere, respectively) and circles the AQUA simula-
tions. Gray markers show the control simulations, red the SST+4K,
and blue the 4 x CO,. The diagnostics are calculated using the
meridional mass stream function vertically integrated between 700
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and 300 hPa, tﬁ. The width is determined as the most equatorward
latitude where z/;:() in each hemisphere, conditioned on being

poleward of the absolute hemispheric maximum, l/;MA v, Which defines
the Hadley cell strength

Medeiros et al 2014: Using aquaplanets to understand the robust responses of
comprehensive climate models to forcing (Climate Dynamics)



Use of CFMIP amip4K tendency terms to understand cloud feedback
mechanisms:

Extended Data Figure 5 | Response of small-scale, low-level drying to surface. Zero contours are shown in white (a few off-scale regions also appear
warming. Change in convective moisture source Mgy, below 850hPaupona  white). The models used for calculating Mj,,. are the eight shown here plus two
+4 K warming in eight atmosphere models and one CMIP3 coupled model; for which M, data were unavailable: CNRM-CM5 and FGOALS-g2.

units are W m ' 2, with negative values indicating stronger drying near the

Sherwood et al 2014: Spread in model climate sensitivity traced to
atmospheric convective mixing (Nature).



Constraining Cloud Feedbacks and Climate Sensitivity:

Tsushima at al submitted: Robustness, uncertainties, and emergent
constraints in the radiative responses of stratocumulus cloud regimes to
future warming (Climate Dynamics)

Brient et al submitted: Shallowness of tropical low clouds as a predictor of
climate models’ response warming (Climate Dynamics)

Gordon et al 2014: Low cloud optical depth feedback in climate models
(JGR)

Su et al 2014: Weakening and Strengthening Structures in the Hadley
Circulation Change under Global Warming and Implications for Cloud
Response and Climate Sensitivity (JGR)

Qu et al 2014: On the spread of changes in marine low cloud cover in
climate model simulations of the 21st century (Climate Dynamics)

Sherwood et al 2014: Spread in model climate sensitivity traced to
atmospheric convective mixing (Nature)

Please see htip://www.cfmip.net for full publication list
© Crown copyright Met Office




‘Emergent Constraint’ on cloud feedback and climate
sensitivity
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Figure 5 | Relation of lower-tropospheric mixing indices to ECS. ECSversus
S (a), D (b) and LTMI = S + D (c¢) from the 43 coupled models with known
ECS. Linear correlation coefficients rare given in each panel

Sherwood et al 2014: Spread in model climate sensitivity traced to
atmospheric convective mixing (Nature)



Understanding cloud feedback/adjustment mechanisms in
LES/MLM/SCMs:

Bretherton et al (submitted): Insights into low-latitude cloud feedbacks from
high-resolution models (Phil Trans A)

van der Dussen et al 2015: An LES model study of the influence of the free
tropospheric thermodynamic conditions on the stratocumulus response to a
climate perturbation (QJRMS)

Dal Gesso et al 2015: A Single-Column Model Intercomparison on the
stratocumulus representation in present-day and future climate (JAMES)

De Roode et al 2014: A mixed-layer model study of the stratocumulus response
to changes in large-scale conditions (J. Climate)

Jones et al 2014: Fast stratocumulus timescale in mixed layer model and large
eddy simulation (JAMES)

Dal Gesso et al 2014: Evaluation of low cloud climate feedback through Single
Column Model equilibrium states (QJRMS)

© Crown copyright Met Office



New cloud feedback mechanisms are being identified in CGILS studies:
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Bretherton and Blossey 2014: Low cloud reduction in a greenhouse warmed climate:
Results from Lagrangian LES of a subtropical marine cloudiness transition (JAMES)
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Dal Gesso et al 2014: A mixed-layer model perspective on stratocumulus steady-states
in a perturbed climate. (QJRMS)



Instantaneous high frequency outputs at 120 ‘cfSites’ locations

Nuijens et al submitted: Observed and modeled patterns of co-variability between
low-level cloudiness and the structure of the trade-wind layer. (JAMES)

Neggers at al in preparation: Attributing the behavior of low-level clouds in large-
scale models to sub-grid scale parameterizations.

Webb et al 2015: The diurnal cycle of marine cloud feedback in climate models
(Climate Dynamics)

Nuijens et al (2015) The behavior of trade-wind cloudiness in observations and

models: The major cloud components and their variability (JAMES)
© Crown copyright Met Office
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CFMIP1 -> CMIP5 Change
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Any metrics/diagnostics related to clouds whose multi-model analysis
results are published are welcome.

Modellers and analysts are encouraged to use and add to the
repository — documentation and help/advice are available.

For details see http://www/cfmip.net -> CFMIP Diagnostic Codes

or email yoko.tsushima@metoffice.gov.uk




CFMIP community — widening

Interests....
Met Office

CFMIP has up to now mostly focused on the evaluation of clouds using satellite
observations and the understanding of cloud feedbacks and adjustments:

However, the CFMIP-2 experiments are now being applied to other questions:
« Understanding of precipitation and circulation responses to climate change
« The role of cloud processes in atmospheric dynamics and variability

The WCRP Grand Challenge is a further development of these widening interests

This is also reflected in a broader scope for CFMIP3/CMIP6

© Crown copyright Met Office



Understanding changes in precipitation and the circulation:

Kent et al 2015: Understanding Uncertainties in Future Projections of Seasonal
Tropical Precipitation. (J. Climate)

Voigt and Shaw 2014: Circulation response to warming shaped by radiative
changes of clouds and water vapour (Nature Geoscience)

Huang et al 2014: Regional response of annual-mean tropical rainfall to global
warming. (Atmospheric Science Letters)

He et al 2014: The Robustness of the Atmospheric Circulation and Precipitation
Response to Future Anthropogenic Surface Warming (GRL)

Kamae et al 2014: Summertime land—sea thermal contrast and atmospheric
circulation over East Asia in a warming climate—Part |l: Importance of CO2-
induced continental warming (Climate Dynamics)

Thorpe and Andrews 2014: The physical drivers of historical and 21st century
global precipitation changes (ERL)

Lambert et al 2014: The cloud radiative effect on the atmospheric energy
budget and global mean precipitation (Climate Dynamics)

Grise and Polvani 2014: Is climate sensitivity related to dynamical sensitivity? A
Southern Hemisphere perspective (GRL)

Please see htip://www.cfmip.net for full publication list
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