Mean-state acceleration for cloudresolving and superparameterized simulations

Chris Jones and Chris Bretherton University of Washington

Mike Pritchard University of California, Irvine

Motivation

 Challenge: LES, CRMs, and superparameterization are expensive (computationally limited by the smallest spatial and shortest time scales)

 Mean atmospheric state often evolves slowly relative to turbulent motions (hours or days versus minutes)

Mean-state acceleration

Artificially accelerate slow mean-state evolution

• Consider scalar field $\phi(x, t)$ with evolution eq.

$$\frac{\partial \phi}{\partial t} = f(\phi, t) \Longrightarrow \begin{cases} \frac{\partial \overline{\phi}}{\partial t} = \overline{f}(\phi, t) \\ \frac{\partial \phi'}{\partial t} = f'(\phi, t) \end{cases}$$

In each time step, magnify the mean-state tendency by an acceleration factor, a:

$$\frac{\partial \phi}{\partial t} = a\overline{f}(\phi, t)$$

or
$$\frac{\partial \phi}{\partial t} = f(\phi, t) + \underbrace{(a-1)\overline{f}(\phi, t)}_{\text{"acceleration tendency"}}$$

LES Implementation in SAM6.7

- Accelerated variables: $\phi \in \{s_{li}, q_t, u, v\}$
- Un-accelerated variable: q_p (no long-term storage; stability concerns)
- Apply acceleration after all other processes in each time step:
 - 1. Standard time step: $\phi(t) \rightarrow \phi(t + \Delta t)$
 - 2. Apply acceleration:

 $\phi(t + a\Delta t) = \phi(t + \Delta t) + (a - 1)\left(\overline{\phi(t + \Delta t)} - \overline{\phi(t)}\right)$

3. If negative q_t is produced at some grid point, bring it up to zero by removing constant fraction of the q_t at other grid points in the same level.

We use the System for Atmospheric Modeling (SAM) version 6.7 (maintained by Marat Khairoutdinov) 4

'Accelerated time step"

BOMEX

Nonprecipitating shallow cumulus

Remarkably similar evolution, even for 16x acceleration

KWAJEX

Tropical deep convection

- Time-dependent forcing
- 50-day simulation (10 days shown)
- Stability-limited to 4x acceleration

4x and CTL generally similar

Precipitation lag in 4x

(consequence of not accelerating q_p)

Application to Cloud Feedbacks *CGILS S12 location (well-mixed coastal Sc)*

- CTL: Current-day climate, fixed SST
- P2: 2K local SST increase; free-troposphere moistadiabatically warmed by 2K remote boundary-layer warming

8x speedup with negligible change in cloud response!

2x accelerated SPCAM captures cloud LWP and precipitation patterns

Mean Cloud LWP

2x Acceleration

Control

2x Acceleration

Control

100

150

200

50

4-year superparameterized climatological simulations (1981-1984)

Similar equatorial wave characteristics between 2x accelerated and control SPCAM simulations

Wave number-frequency spectrum of equatorially symmetric 10S-10N averaged anomalies of OLR

2x (time) accelerated SPCAM with 4x "sparse space" acceleration

Mean Cloud LWP

Precipitation Rate

12-day simulations combining 2x acceleration with "micro-CRM" (8 CRM columns instead of 32; Pritchard et al, 2014)

Summary

- Mean state acceleration is a robust method for speeding up CRM and superparameterized simulations in which the turbulent circulations and clouds are evolving faster than the CRM horizontal mean state.
- Straightforward to implement.
- Depending on the problem, 2x-8x or more speedup achieved without serious degradation of the solution.

Jones, C. R., C. S. Bretherton, and M. S. Pritchard: Mean state acceleration of cloud resolving models and large eddy simulations. Submitted to J. Adv. Model. Earth Sys., 5/2015.

Case Study and Model Setup

Table 1. LES details^a

Case	$\Delta x \times \Delta y$ [m]	$\Delta z [\mathrm{m}]$	$n_x imes n_y$	n_z	Rad	Comments
DYCOMSII-RF01	25×25	5^{b}	128×128	96	Idealized	Geostrophic, No precip
BOMEX	100×100	40	256×256	96	None	Geostrophic
KWAJEX	1000×1000	100-1000	256×256	64	Interactive (CAM3)	Nudged
CGILS S12	25×25	5^{b}	96×96	192	RRTM	UV,QT nudged

^a Cases and variables are as described in the text.

^b Stretched grid with 5 m spacing near the inversion.

LES Model: System for Atmospheric Modeling (SAM) 6.7, maintained by Marat Khairoutdinov - Khairoutdinov and Kogan microphysics (except KWAJEX: Default SAM 1 Moment Micro) SPCAM 3.0:

- GCM: Spectral dynamical core (T42 Truncation); 30 vertical levels; time step = 30 min;
- 2D CRMs: 32 columns x 4 km horizontal resolution; 20 second time step
- Accelerate only $\{s_{li}, q_t\}$; No q_t correction

References: SAM: Khairoutdinov and Randall, 2003 DYCOMS: Stevens et al., 2005 BOMEX: Siebesma et al., 2003 KWAJEX: Blossey et al., 2007 CGILS S12: Blossey et al., 2013; Bretherton et al., 2013; Zhang et al., 2013

Application to Superparameterization

Stringent test of acceleration technique

the embedded CRMs subjected to realistic forcings across wide range of spatial and temporal scales.

- Pilot SPCAM3.0 implementation by Mike Pritchard
- Accelerated variables: $\{s_{li}, q_t\}$
- No q_t correction

Figure 3. BOMEX 36-48 h mean profiles of (a) cloud fraction and (b) q_c .

Figure 7. KWAJEX 50-day averaged profiles of (a) cloud water and ice profiles, and (b) cloud fraction.