NASA

CFMIP Monterey 06/09/2015

# Multi-Model Evaluation of Cloud Phase Transition Using Satellite and Reanalysis Data

#### **Grégory Cesana**

Jet Propulsion Laboratory, Pasadena, California

Contributors: D. Waliser, X. Jiang, J-F Li, H. Chepfer, J. Cole, P-L. Ma, R. Roehrig

**Cesana**, Waliser, Jiang & Li: Multi-Model Evaluation of Cloud Phase Transition using Satellite and Reanalysis data, 2015, JGR DOI: 10.1002/2014JD022932

Copyright 2015 California Institute of Technology. U.S. Government sponsorship acknowledged

# Why does the Cloud Phase matter?

- Different radiative properties (e.g. Twomey, 1977)
- Cloud lifetime
- Precipitation
- In GCMs, clouds, climate sensitivity & radiation are sensitive to the treatment of the cloud phase (e.g. Li & LeTreut 1992, Forbes and Ahlgrimm 2014).

## **Cloud Phase in GCMs**



# **Goals of the study**

- Develop a method to compare obs and models
- Evaluate the cloud phase representation in the models
- Evaluate T-dependent vs. complex microphysics for cloud phase representation

#### Cloud Phase Evaluation: Obs vs. Model



Since no lidar simulator is used in this part of the study, we developed another method to evaluate the models in a consistent way.

#### Method: Phase Ratio at 90% (PR90)

Model MPR = IWC / IWC+LWC



## Method: Phase Ratio at 90% (PR90)



At 90%, Mass Phase Ratio (Model) ≈ Frequency Phase Ratio (Obs) → PR90 allows a consistent evaluation of the models <u>while no simulator is used</u>.

#### Results

#### 16 Models (GASS-YOTC & CMIP5)

- -2.5x2.5 and 40 temperature levels
- Daily frequency
- Annual Mean
- AMIP-like

#### Obs

- 2.5x2.5 and 40 temperature levels
- Daily frequency (Nighttime only)
- Annual mean (7years)

#### **Zonal mean of the Mass Phase Ratio**



## **Zonal mean of the Mass Phase Ratio**



→ Few models are able to reproduce the observed zonal variations at PR90.

# **Global Average of the Temperature at PR90**



# Global Average of the Temperature at PR90



→ Inter-Model spread very large
→ In 13/16 models, the temperature at PR90 is too warm compared to Obs.

# Conclusions

Using the Phase Ratio at 90% in both CALIPSO-GOCCP observations (FPR90) and 16 GCMs (MPR90), we showed that:

- Very few models are able to reproduce the observed zonal variations of the cloud phase at *PR90*.
- Transition from mixed-phase to ice clouds occurs at too warm temperature in most models (13/16).
- Apart from observations, models demonstrate a wide variation in Mass Phase Ratio across all latitudes/temperatures.

#### Cloud Phase Evaluation: Obs vs. Model



- Using the simulator allows a consistent evaluation of the cloud phase at every temperature and for every height level (not only at PR90)

### **Zonal mean of the Phase Ratio**



## Zonal Mean of the Phase Ratio (SIM)



# Zonal Mean of the Phase Ratio (SIM)



## **Temperature / Phase + Simulator**



LIQ

#### **Temperature / Phase + Simulator**



## **Temperature / Phase + Simulator**





Using CALIPSO-GOCCP observations, we assessed the cloud phase representation in several GCMs (GASS-YOTC and CMIP5).

- Without simulator, we can still evaluate some aspects of the cloud phase using the phase ratio at 90% method:

- The zonal variations of the cloud phase (barely reproduced by few models)
- The transition temperature (height) from mixed-phase to ice clouds (too warm in 13/16 models)

- With the simulator, we can fully evaluate the cloud phase at every temperature and height level:

- *T-dependent cloud phase partitioning is not realistic*
- Not enough supercooled liquid clouds at temperature colder than -30°C

Overall, complex microphysics cloud schemes are needed to better reproduce observations.